[1] PIVKIN, I. V. and KARNIADAKIS, G. E. A new method to impose no-slip boundary conditions in dissipative particle dynamics. Journal of Computational Physics, 207(1), 114-128(2005) [2] KEAVENY, E. E., PIVKIN, I. V., MAXEY, M., and KARNIADAKIS, G. E. A comparative study between dissipative particle dynamics and molecular dynamics for simple- and complex-geometry flows. The Journal of Chemical Physics, 123(10), 104107(2005) [3] HOOGERBRUGGE, P. J. and KOELMAN, J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters, 19(3), 155-160(1992) [4] ESPAÑOL, P. and WARREN, P. Statistical mechanics of dissipative particle dynamics. Europhysics Letters, 30(4), 191-196(1995) [5] LI, Z., BIAN, X., TANG, Y. H., and KARNIADAKIS, G. E. A dissipative particle dynamics method for arbitrarily complex geometries. Journal of Computational Physics, 355, 534-547(2018) [6] WILLEMSEN, S., HOEFSLOOT, H., and IEDEMA, P. No-slip boundary condition in dissipative particle dynamics. International Journal of Modern Physics C, 11(5), 881-890(2000) [7] DUONG-HONG, D., PHAN-THIEN, N., and FAN, X. An implementation of no-slip boundary conditions in the DPD. Computational Mechanics, 35(1), 24-29(2004) [8] PIVKIN, I. V. and KARNIADAKIS, G. E. Controlling density fluctuations in wall-bounded dissipative particle dynamics systems. Physical Review Letters, 96(20), 206001(2006) [9] YARNELL, J., KATZ, M., WENZEL, R., and KOENIG, S. Structure factor and radial distribution function for liquid argon at 85°K. Physical Review A, 7(6), 2130-2144(1973) [10] GROOT, R. and WARREN, P. Dissipative particle dynamics:bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 107(11), 4423-4435(1997) [11] PLIMPTON, S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1), 1-19(1995) [12] KUMAR, A., ASAKO, Y., ABU-NADA, E., KRAFCZYK, M., and FAGHRI, M. From dissipative particle dynamics scales to physical scales:a coarse-graining study for water flow in microchannel. Microfluidics and Nanofluidics, 7(4), 467-477(2009) [13] GROOT, R. and RABONE, K. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophysical Journal, 81(2), 725-736(2001) [14] FRENKEL, D. and SMIT, B. Understanding Molecular Simulations:from Algorithms to Applications, 2nd ed., Academic, New York (2002) [15] BACKER, J., LOWE, C., HOEFSLOOT, H., and IEDEMA, P. Poiseuille flow to measure the viscosity of particle model fluids. Journal of Chemical Physics, 122(15), 154503(2005) [16] SARKARA, S. and SELVAM, R. P. Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. Journal of Applied Physics, 102(7), 074302(2007) [17] GENNES, P. G. Wetting:statics and dynamics. Review of Modern Physics, 57(3), 827-863(1985) [18] JIANG, C., OUYANG, J., LIU, Q., LI, W., and ZHUANG, X. Studying the viscosity of methane fluid for different resolution levels models using Poiseuille flow in a nano-channel. Microfluidics and Nanofluidics, 20(12), 157(2016) [19] FARAJI, F., RAJABPOUR, A., and KOWSARY, F. Temperature profile for nanoscale Poiseuille flow:a multiscale study. Journal of Mechanical Science and Technology, 30(2), 803-807(2016) |