Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (1): 63-80.doi: https://doi.org/10.1007/s10483-025-3209-8
Previous Articles Next Articles
Jie CHEN1,†(), Xinyue ZHANG2, Mingyang FAN2
Received:
2024-09-06
Revised:
2024-11-27
Online:
2025-01-03
Published:
2025-01-03
Contact:
Jie CHEN
E-mail:jchen@bjut.edu.cn
Supported by:
2010 MSC Number:
Jie CHEN, Xinyue ZHANG, Mingyang FAN. Dynamic behaviors of graphene platelets-reinforced metal foam piezoelectric beams with velocity feedback control. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 63-80.
Table 5
The parameters of the basic piezoelectric copper-matrix beam"
Item | Copper-matrix beam | Piezopatches | Item | Copper-matrix beam | Piezo-patches |
---|---|---|---|---|---|
Young's modulus, E/GPa | 130 | 126 | Thickness, h/mm | 5 | 0.5 |
Density, | 8 960 | 7 500 | Poisson's ratio, | 0.34 | 0.3 |
Length, | 500 | 500 | Piezoelectric stress constant, | / | -6.5 |
Width, b/mm | 10 | 10 | Dielectric constant, | / |
Table 6
Fundamental frequency of the GPLs-reinforced metal foam piezoelectric beam (GPL-X, L/h=100, h=5 mm, and ΛGPL=1%)"
Distribution | Fundamental frequency/Hz | |||
---|---|---|---|---|
1/5 | PD-X | 174.215 2 | 174.321 1 | 174.415 5 |
PD-U | 174.215 2 | 174.233 4 | 174.267 2 | |
PD-O | 174.215 2 | 174.086 1 | 174.049 1 | |
1/8 | PD-X | 162.496 7 | 162.624 3 | 162.744 2 |
PD-U | 162.496 7 | 162.476 0 | 162.493 1 | |
PD-O | 162.496 7 | 162.226 6 | 162.123 2 | |
1/10 | PD-X | 158.510 5 | 158.651 2 | 158.787 2 |
PD-U | 158.510 5 | 158.463 0 | 158.468 1 | |
PD-O | 158.510 5 | 158.146 2 | 157.997 7 |
Table 7
Nonlinear frequency ratio of the GPLs-reinforced metal foam piezoelectric beam (GPL-X, L/h=100, h=5 mm, ΛGPL=1%, and e0=0.5)"
Distribution | ||||||
---|---|---|---|---|---|---|
0.5 | 1.0 | 1.5 | 2.0 | |||
1/5 | PD-X | 174.415 5 | 1.040 4 | 1.152 1 | 1.315 2 | 1.511 0 |
PD-U | 174.267 2 | 1.040 4 | 1.152 2 | 1.315 3 | 1.511 2 | |
PD-O | 174.049 1 | 1.040 5 | 1.152 5 | 1.315 9 | 1.512 2 | |
1/8 | PD-X | 162.744 2 | 1.037 2 | 1.140 8 | 1.293 1 | 1.477 4 |
PD-U | 162.493 1 | 1.037 3 | 1.140 9 | 1.293 4 | 1.477 8 | |
PD-O | 162.123 2 | 1.037 4 | 1.141 5 | 1.294 5 | 1.479 5 | |
1/10 | PD-X | 158.787 2 | 1.036 2 | 1.137 0 | 1.285 7 | 1.466 0 |
PD-U | 158.468 1 | 1.036 2 | 1.137 2 | 1.286 0 | 1.466 6 | |
PD-O | 157.997 7 | 1.036 4 | 1.137 9 | 1.287 4 | 1.468 7 |
[1] | SMITH, B. H., SZYNISZEWSKI, S., HAJJAR, J. F., SCHAFER, B. W., and ARWADE, S. R. Steel foam for structures: a review of applications, manufacturing and material properties. Journal of Constructional Steel Research, 71, 1–10 (2012) |
[2] | RABIEI, A. and VENDRA, L. J. A comparison of composite metal foam's properties and other comparable metal foams. Materials Letters, 63(5), 533–536 (2009) |
[3] | RAJENDRAN, R., SAI, K. P., CHANDRASEKAR, B., GOKHALE, A., and BASU, S. Preliminary investigation of aluminium foam as an energy absorber for nuclear transportation cask. Materials & Design, 29(9), 1732–1739 (2008) |
[4] | AVALLE, M., BELINGARDI, G., and IBBA, A. Mechanical models of cellular solids: parameters identification from experimental tests. International Journal of Impact Engineering, 34(1), 3–27 (2007) |
[5] | HASSANI, A., HABIBOLAHZADEH, A., and BAFTI, H. Production of graded aluminum foams via powder space holder technique. Materials & Design, 40, 510–515 (2012) |
[6] | CHEN, D., YANG, J., and KITIPORNCHAI, S. Elastic buckling and static bending of shear deformable functionally graded porous beam. Composite Structures, 133, 54–61 (2015) |
[7] | CHEN, D., YANG, J., and KITIPORNCHAI, S. Free and forced vibrations of shear deformable functionally graded porous beams. International Journal of Mechanical Sciences, 108-109, 14–22 (2016) |
[8] | CHEN, D., KITIPORNCHAI, S., and YANG, J. Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Structures, 107, 39–48 (2016) |
[9] | OZBULUT, O. E., JIANG, Z., and HARRIS, D. K. Exploring scalable fabrication of self-sensing cementitious composites with graphene nanoplatelets. Smart Materials and Structures, 27(11), 115029 (2018) |
[10] | WANG, Y., XIE, K., FU, T., and SHI, C. Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses. Composite Structures, 209, 928–939 (2019) |
[11] | ANTENUCCI, A., GUARINO, S., TAGLIAFERRI, V., and UCCIARDELLO, N. Electro-deposition of graphene on aluminium open cell metal foams. Materials & Design, 71, 78–84 (2015) |
[12] | RAFIEE, M. A., RAFIEE, J., WANG, Z., SONG, H., YU, Z. Z., and KORATKAR, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano, 3(12), 3884–3890 (2009) |
[13] | LI, Z., YOUNG, R. J., WILSON, N. R., KINLOCH, I. A., VALLÉS, C., and LI, Z. Effect of the orientation of graphene-based nanoplatelets upon the Young's modulus of nanocomposites. Composites Science and Technology, 123, 125–133 (2016) |
[14] | KITIPORNCHAI, S., CHEN, D., and YANG, J. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Materials & Design, 116, 656–665 (2017) |
[15] | SUN, H. and CHEN, J. Vibration reduction of graphene reinforced porous nanocomposite beams under moving loads using a nonlinear energy sink. Engineering Structures, 321, 118997 (2024) |
[16] | YANG, Z., LAI, S. K., YANG, J., LIU, A., and FU, J. Coupled dynamic instability of graphene platelet-reinforced dielectric porous arches under electromechanical loading. Thin-Walled Structures, 197, 111534 (2024) |
[17] | SONG, J. P., SHE, G. L., and ELTAHER, M. A. Nonlinear aero-thermo-elastic flutter analysis of stiffened graphene platelets reinforced metal foams plates with initial geometric imperfection. Aerospace Science and Technology, 147, 109050 (2024) |
[18] | GAN, L. L. and SHE, G. L. Nonlinear low-velocity impact of magneto-electro-elastic plates with initial geometric imperfection. Acta Astronautica, 214, 11–29 (2024) |
[19] | GAN, L. L. and SHE, G. L. Nonlinear transient response of magneto-electro-elastic cylindrical shells with initial geometric imperfection. Applied Mathematical Modelling, 132, 166–186 (2024) |
[20] | LUO, Y., ZHANG, X., ZHANG, Y., QU, Y., XU, M., FU, K., and YE, L. Active vibration control of a hoop truss structure with piezoelectric bending actuators based on a fuzzy logic algorithm. Smart Materials and Structures, 27(8), 085030 (2018) |
[21] | CHEN, Y., WICKRAMASINGHE, V., and ZIMCIK, D. Experimental evaluation of the Smart Spring for helicopter vibration suppression through blade root impedance control. Smart Materials and Structures, 14(5), 1066 (2005) |
[22] | WANG, X., XIA, P., and MASARATI, P. Active aeroelastic control of aircraft wings with piezo-composite. Journal of Sound and Vibration, 455, 1–19 (2019) |
[23] | ARIDOGAN, U. and BASDOGAN, I. A review of active vibration and noise suppression of plate-like structures with piezoelectric transducers. Journal of Intelligent Material Systems and Structures, 26(12), 1455–1476 (2015) |
[24] | SONG, Z. G. and LI, F. M. Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs. Smart Materials and Structures, 20(5), 055013 (2011) |
[25] | ZHANG, X. Y., CHEN, J., and ZHANG, W. Optimal placement of piezoelectric actuator/sensor pairs for active vibration control of beams with different boundary conditions. Mechanics Based Design of Structures and Machines, 1–18 (2024) https://doi.org/10.1080/15397734.2024.2404611 |
[26] | MIRGHAFFARI, A. and RAHMANI, B. Active vibration control of carbon nanotube reinforced composite beams. Transactions of the Institute of Measurement and Control, 39(12), 1851–1863 (2016) |
[27] | LI, H. N., WANG, W., LAI, S. K., YAO, L. Q., and LI, C. Nonlinear vibration and stability analysis of rotating functionally graded piezoelectric nanobeams. International Journal of Structural Stability and Dynamics, 24(9), 2450103 (2023) |
[28] | LI, C., ZHU, C., LIM, C. W., and LI, S. Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading. Applied Mathematics and Mechanics (English Edition), 43(12), 1821–1840 (2022) https://doi.org/10.1007/s10483-022-2917-7 |
[29] | MALEKZADEH, P., SETOODEH, A. R., and SHOJAEE, M. Vibration of FG-GPLs eccentric annular plates embedded in piezoelectric layers using a transformed differential quadrature method. Computer Methods in Applied Mechanics and Engineering, 340, 451–479 (2018) |
[30] | NGUYEN, N. V., LEE, J., and NGUYEN-XUAN, H. Active vibration control of GPLs-reinforced FG metal foam plates with piezoelectric sensor and actuator layers. Composites Part B: Engineering, 172, 769–784 (2019) |
[31] | EBRAHIMI, F. and HOSSEINI, S. H. S. Resonance analysis on nonlinear vibration of piezoelectric/FG porous nanocomposite subjected to moving load. The European Physical Journal Plus, 135(2), 215 (2020) |
[32] | TRAN, H. Q., VU, V. T., and TRAN, M. T. Free vibration analysis of piezoelectric functionally graded porous plates with graphene platelets reinforcement by pb-2 Ritz method. Composite Structures, 305, 116535 (2023) |
[33] | DONG, Y., LI, Y., LI, X., and YANG, J. Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers. Applied Mathematical Modelling, 82, 252–270 (2020) |
[34] | ROBERTS, A. P. and GARBOCZI, E. J. Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Materialia, 49(2), 189–197 (2001) |
[35] | INMAN, D. J. Vibration with Control, John Wiley & Sons, New York (2017) |
[36] | WU, H. L., YANG, J., and KITIPORNCHAI, S. Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections. Composites Part B: Engineering, 90, 86–96 (2016) |
[37] | KUMAR, K. R. and NARAYANAN, S. Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs. Smart Materials and Structures, 17(5), 055008 (2008) |
[38] | SONG, Z. G., ZHANG, L. W., and LIEW, K. M. Active vibration control of CNT reinforced functionally graded plates based on a higher-order shear deformation theory. International Journal of Mechanical Sciences, 105, 90–101 (2016) |
[39] | WANG, Y. and CHEN, J. Nonlinear free vibration of rotating functionally graded graphene platelets reinforced blades with variable cross-sections. Engineering Analysis with Boundary Elements, 144, 262–278 (2022) |
[40] | CHEN, D., YANG, J., and KITIPORNCHAI, S. Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Composites Science and Technology, 142, 235–245 (2017) |
[41] | RAFIEE, M., YANG, J., and KITIPORNCHAI, S. Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers. Composite Structures, 96, 716–725 (2013) |
[42] | ŞIMŞEK, M. Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load. Composite Structures, 92(10), 2532–2546 (2010) |
[1] | Yuxin HAO, Lei SUN, Wei ZHANG, Han LI. Active traveling wave vibration control of elastic supported conical shells with smart micro fiber composites based on the differential quadrature method [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 305-. |
[2] | N. D. NGUYEN, T. N. NGUYEN. Chebyshev polynomial-based Ritz method for thermal buckling and free vibration behaviors of metal foam beams [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 891-910. |
[3] | Jiawei MAO, Hao GAO, Junzhe ZHU, Penglin GAO, Yegao QU. Analytical modeling of piezoelectric meta-beams with unidirectional circuit for broadband vibration attenuation [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1665-1684. |
[4] | Jianxun ZHANG, Jinwen BAI. A novel efficient energy absorber with free inversion of a metal foam-filled circular tube [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 1-14. |
[5] | Changsong ZHU, Xueqian FANG, Jinxi LIU. Nonlinear free vibration of piezoelectric semiconductor doubly-curved shells based on nonlinear drift-diffusion model [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1761-1776. |
[6] | Qingdong CHAI, Yanqing WANG, Meiwen TENG. Nonlinear free vibration of spinning cylindrical shells with arbitrary boundary conditions [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(8): 1203-1218. |
[7] | Shaowu YANG, Yuxin HAO, Wei ZHANG, Li YANG, Lingtao LIU. Nonlinear vibration of functionally graded graphene plateletreinforced composite truncated conical shell using first-order shear deformation theory [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 981-998. |
[8] | V. V. THAM, H. Q. TRAN, T. M. TU. Vibration characteristics of piezoelectric functionally graded carbon nanotube-reinforced composite doubly-curved shells [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(6): 819-840. |
[9] | M. SHABAN, H. MAZAHERI. Bending analysis of five-layer curved functionally graded sandwich panel in magnetic field: closed-form solution [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(2): 251-274. |
[10] | Jianxun ZHANG, Haoyuan GUO. Low-velocity impact of rectangular foam-filled fiber metal laminate tubes [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(12): 1733-1742. |
[11] | Haohao BI, Bo WANG, Zichen DENG, Shuodao WANG. Effects of thermo-magneto-electro nonlinearity characteristics on the stability of functionally graded piezoelectric beam [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(2): 313-326. |
[12] | R. KARROUBI, M. IRANI-RAHAGHI. Rotating sandwich cylindrical shells with an FGM core and two FGPM layers: free vibration analysis [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(4): 563-578. |
[13] | Yanping KONG, Ruomeng TIAN, Jie XU, Jinxi LIU. Propagation behavior of SH waves in a piezomagnetic substrate with an orthorhombic piezoelectric layer [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(2): 207-218. |
[14] | Rong WANG, Guohua NIE. Nonlinear free vibration of reticulated shallow spherical shells taking into account transverse shear deformation [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(12): 1825-1836. |
[15] | M. AREFI, R. KARROUBI, M. IRANI-RAHAGHI. Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(7): 821-834. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||