[1] Hillier, R,Computation of shuck wave diffraction at a ninety degree corvex edge, Shock Waves, 1(1991)89.
[2] Bazarov, S. B. et al., Study of shuck wave diffraction in gases at sharp and curved corners, Proc. 18th Symp. un Shock Waves,(1991)1155.
[3] Yang, J. Y. et al., Computation of shock diffraction in external and internal flows, Proc. 18th Symp. on Shock Waves,(1991),1063.
[4] Igra, O. and G. Ben-Dur, Dusty shock wave, Appl. Meth. Rev.,41(1988), 379.
[5] Yanenko. N. N.. The Method of Fractional Steps, Springer-Verlag,(1971).
[6] Sod, G. A., A numerical study of a converging cylindrical shock, J. Fluid Mech., 83(1977), 785.
[7] Ben-Artzi, M. and J.Falcovitz, A second-order Godunov-type scheme for compressible fluid dynamics, J. Comp, Phys., 55(1984),1.
[8] MacCormack, R. W, The Effectof Viscosity in Hypervelocity Impact Cratering, AIAA Paper 69-354(1969).
[9] Wu Qing-son et al., Numerical simulation of shock diffraction by high resolution GRP scheme, Proc. 7th National Conference on Computational Fluid Dynamics, April 25-30, 1994, Wenzhou, (in Chinese).
[10] Strung, G., On the construction and comparison of finite difference schemes, SIAM J. Numer,Anal., 5(1968). 506.
[11] Skews, B. W, The perturbed region behind a diffraction shock wave. J. Fluid Mech., 29(1967), 705. |