UNILATERAL CONTACT PROBLEMS USING QUASI-ACTIVE SET STRATEGY
XUAN Zhao-cheng1, LI Xing-si 2
1. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, P. R. China; 2. Research Institute of Engineering Mechanics, Dalian University of Technology, Dalian 116024, P. R. China
XUAN Zhao-cheng;LI Xing-si . UNILATERAL CONTACT PROBLEMS USING QUASI-ACTIVE SET STRATEGY. Applied Mathematics and Mechanics (English Edition), 2002, 23(8): 913-921.
[1] Bisbos C D. A Cholesky condensation method for unilateral contact problems[J]. Solid Mechanics Archives,1985,11(1):1-23. [2] Panagiotopoulos P D. A nonlinear programming approach to the unilateral contact and friction boundary value problem in the theory of elasticity[J]. Ingenieur Archiv,1974,44(3):421-432. [3] Kikuchi N, Oden J T. Contact Problems in Elasticity: A Study of Variational Inequalities and FEM[M]. Philadelphia:SIAM,1988. [4] Zhong W X, Sun S M. A parametric quadratic programming approach to elastic contact problems with friction[J]. Comput & Structures,1989,32(1):37-43. [5] Xuan Z C, Li X S, Sui Y K. Surrogate dual problem of quadratic programming and the algorithm[J]. Chinese J Numer Math Appl,1999,21(1):45-53. [6] Rosen J B, Suzuki S. Construction of nonlinear programming test problems[J]. Comm of the ACM,1965,8(2):113. [7] Šimunovic S, Saigal S. A linear programming formulation for incremental contact analysis[J]. Internat J Numer Methods Engrg,1995,38(16):2703-2725.