[1] ZHOU Tian-xiao. Finite element method based on combination of "saddle point" variational formulations[J]. Science in China, Ser E, 1997,27(1):75-87. [2] ZHOU Tian-xiao. Stabilized hybrid finite element methods based on combination of saddle point principles of elasticity problem[J]. Math Co mput,2003,72(244): 1655-1673. [3] ZHOU Tian-xiao, NIE Yu-feng. A combined hybrid approach to finite element schemes of high performance[J]. Internat J Numer Methods Engrg,2001,51(2): 181-202. [4] ZHOU Tian-xiao, XIE Xiao-ping. A combined hybrid finite element method for plate bending problems[J]. J Comput Math, 2003,21(3): 347-356. [5] Allman D J.A compatibl, triangular element including vertex rotations for plane elasticity analysis[J]. Comput Struct, 1984,19(1): 1-8. [6] Pian T H H, Sumihara K. Rational approach for assumed stress finite elements[J]. Internat J Numer Methods Engrg, 1984,20(9): 1685-1695. [7] Piltner R, Taylor R L. A systematic construction of B-bar functions for linear and nonlinear mixedenhanced finite elements for plane elasticity problems[J]. Internat J Numer Methods Eegrg,1999,44(5):615-639. [8] MacNeal R H,Harder R L.A proposed standard set of problems to test finite element accuracy[J].Finite Elements in Analysis and Design, 1985,1 (1):3-20. [9] Chen W-J, Cheung Y-K. Robust refined quadrilateral plane element[J]. Internat J Numer Methods Engrg,1995,38(4):649-666. [10] Simo J C,Rifai M S.A class of assumed strain methods and the method of incompatible modes[J].Internat J Numer Methods Engrg, 1990,29(8): 1595-1638. [11] Pian T H H. Finite elements based on consistently assumed stresses and displacements[J]. Finite Elements in Analysis and Design, 1985,1(2):131-140. [12] CHIEN Wei-zang. Incompatible elements and generalized variational principle[A]. In: Proceedings of Symposium on Finite Element Method[C]. 252. Beijing: Science Press; New York: Gorden and Breach,Science Publ, 1982. [13] Brezzi F,Fortin M.Mixed and Hybrid Finite Element Methods[M].Berlin:Springer-Verlag,1992. [14] ZHOU Tian-xiao,XIE Xiao-ping. A unified analysis for stress/strain hybrid methods of high performance[J]. Comput Methods Appl Meth Engrg,2002,191(41/42):4619-4640. |