[1] |
J. WU, S. F. WANG, P. PERDIKARIS.
A dive into spectral inference networks: improved algorithms for self-supervised learning of continuous spectral representations
[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1199-1224.
|
[2] |
J. N. FUHG, A. KARMARKAR, T. KADEETHUM, H. YOON, N. BOUKLAS.
Deep convolutional Ritz method: parametric PDE surrogates without labeled data
[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1151-1174.
|
[3] |
Xuhui MENG.
Variational inference in neural functional prior using normalizing flows: application to differential equation and operator learning problems
[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1111-1124.
|
[4] |
Yichuan HE, Zhicheng WANG, Hui XIANG, Xiaomo JIANG, Dawei TANG.
An artificial viscosity augmented physics-informed neural network for incompressible flow
[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1101-1110.
|
[5] |
M. KIM, G. LIN.
Peri-Net-Pro: the neural processes with quantified uncertainty for crack patterns
[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1085-1100.
|
[6] |
Zhiping MAO, Xuhui MENG.
Physics-informed neural networks with residual/gradient-based adaptive sampling methods for solving partial differential equations with sharp solutions
[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1069-1084.
|
[7] |
W. WU, M. DANEKER, M. A. JOLLEY, K. T. TURNER, L. LU.
Effective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics
[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1039-1068.
|
[8] |
Yueping WANG, Lizhong MU, Ying HE.
Thermogram-based estimation of foot arterial blood flow using neural networks
[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(2): 325-344.
|
[9] |
Lincong CHEN, Zi YUAN, Jiamin QIAN, J. Q. SUN.
Random vibration of hysteretic systems under Poisson white noise excitations
[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(2): 207-220.
|
[10] |
Qiang YIN, Juntong CAI, Xue GONG, Qian DING.
Local parameter identification with neural ordinary differential equations
[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1887-1900.
|
[11] |
Xiaochen MAO, Xingyong LI, Weijie DING, Song WANG, Xiangyu ZHOU, Lei QIAO.
Dynamics of a multiplex neural network with delayed couplings
[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(3): 441-456.
|
[12] |
Zeyu LIU, Yantao YANG, Qingdong CAI.
Neural network as a function approximator and its application in solving differential equations
[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(2): 237-248.
|
[13] |
M. A. Z. RAJA, R. SAMAR, T. HAROON, S. M. SHAH.
Unsupervised neural network model optimized with evolutionary computations for solving variants of nonlinear MHD Jeffery-Hamel problem
[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(12): 1611-1638.
|
[14] |
YIN Tao;LIN Xiang-Hui;SHU Hong-Ping.
Statistical detection of structural damage based on model reduction
[J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(7): 875-888.
|
[15] |
WANG Ru-Bin;ZHANG Zhi-Kang;Chi K. Tse.
Neurodynamics analysis of brain information transmission
[J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(11): 1415-1428.
|