[1] VAN GERVEN, M. and BOHTE, S. Artificial neural networks as models of neural information processing. Frontiers in Computational Neuroscience, 11, 00114(2017) [2] HAYKIN, S. S. Neural Networks and Learning Machines, 3rd ed., Prentice Hall, Englewood, New Jersey (2008) [3] KRIZHEVSKY, A., SUTSKEVER, I., and HINTON, G. E. Imagenet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems, 1, 1097-1105(2012) [4] LECUN, Y., BENGIO, Y., and HINTON, G. Deep learning. nature, 521, 436-444(2015) [5] LAKE, B. M., SALAKHUTDINOV, R., and TENENBAUM, J. B. Human-level concept learning through probabilistic program induction. Science, 350, 1332-1338(2015) [6] ALIPANAHI, B., DELONG, A., WEIRAUCH, M. T., and FREY, B. J. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nature Biotechnology, 33, 831-838(2015) [7] MCCULLOCH, W. S. and PITTS, W. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5, 115-133(1943) [8] ROSENBLATT, F. The perceptron:a probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386-408(1958) [9] ROSENBLATT, F. Principles of Neurodynamics:Perceptions and the Theory of Brain Mechanism, Spartan Books, Washington, D. C. (1961) [10] MINSKY, M. and PAPERT, S. A. Perceptrons:An Introduction to Computational Geometry, MIT Press, Cambridge (1969) [11] WERBOS, P. Beyond Regression:New Tools for Prediction and Analysis in the Behavioral Sciences, Ph. D. dissertation, Harvard University (1974) [12] RALL, L. B. Automatic Differentiation:Techniques and Applications, Springer-Verlag, Berlin (1981) [13] BAYDIN, A. G., PEARLMUTTER, B. A., RADUL, A. A., and SISKIND, J. M. Automatic differentiation in machine learning:a survey. The Journal of Machine Learning Research, 18, 1-43(2018) [14] RAISSI, M., PERDIKARIS, P., and KARNIADAKIS, G. E. Physics informed deep learning (part i):data-driven solutions of nonlinear partial differential equations. arXiv, arXiv:1711.10561(2017) https://arxiv.org/abs/1711.10561 [15] MALL, S. and CHAKRAVERTY, S. Application of legendre neural network for solving ordinary differential equations. Applied Soft Computing, 43, 347-356(2016) [16] MALL, S. and CHAKRAVERTY, S. Chebyshev neural network based model for solving laneemden type equations. Applied Mathematics and Computation, 247, 100-114(2014) [17] BERG, J. and NYSTRÖM, K. A unified deep artificial neural network approach to partial differential equations in complex geometries. arXiv, arXiv:1711.06464(2017) https://arxiv.org/abs/1711.06464 [18] MAI-DUY, N. and TRAN-CONG, T. Numerical solution of differential equations using multiquadric radial basis function networks. Neural Networks, 14, 185-199(2001) [19] JIANYU, L., SIWEI, L., YINGJIAN, Q., and YAPING, H. Numerical solution of elliptic partial differential equation using radial basis function neural networks. Neural Networks, 16, 729-734(2003) [20] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS, A., DEAN, J., DEVIN, M., GHEMAWAT, S., IRVING, G., ISARD, M., and KUDLUR, M. Tensorflow:a system for large-scale machine learning. The 12th USENIX Symposium on Operating Systems Design and Implementation, 16, 265-283(2016) [21] HORNIK, K., STINCHCOMBE, M., and WHITE, H. Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359-366(1989) [22] CYBENKO, G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2, 303-314(1989) [23] JONES, L. K. Constructive approximations for neural networks by sigmoidal functions. Proceedings of the IEEE, 78, 1586-1589(1990) [24] CARROLL, S. and DICKINSON, B. Construction of neural networks using the Radon transform. IEEE International Conference on Neural Networks, 1, 607-611(1989) [25] LIU, D. C. and NOCEDAL, J. On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45, 503-528(1989) [26] LEE, C. B. Possible universal transitional scenario in a flat plate boundary layer:measurement and visualization. Physical Review E, 62, 3659-3670(2000) [27] LEE, C. B. and WU, J. Z. Transition in wall-bounded flows. Applied Mechanics Reviews, 61, 030802(2008) [28] LEE, C. B. New features of CS solitons and the formation of vortices. Physics Letters A, 247, 397-402(1998) [29] LEE, C. B. and FU, S. On the formation of the chain of ring-like vortices in a transitional boundary layer. Experiments in Fluids, 30, 354-357(2001) |