[1] Kushwaha, M. S., Halevi, P., Martinez, G., Dobrzynski, L., and Djafarirouhani, B. Acoustic band structure of periodic elastic composites. Physical Review Letters, 71, 2022-2025 (1993)
[2] Kushwaha, M. S. and Halevi, P. Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders. Applied Physics Letters, 69, 31-33 (1996)
[3] Yuan, J. H., Lu, Y. Y., and Antoine, X. Modeling photonic crystals by boundary integral equations and Dirichlet-to-Neumann maps. Journal of Computational Physics, 227, 4617-4629 (2008)
[4] Tanaka, Y., Tomoyasu, Y., and Tamura, S. Band structure of acoustic waves in phononic lattices: two-dimensional composites with large acoustic mismatch. Physical Review B, 62, 7387 (2000)
[5] Sainidou, R., Stefanou, N., and Modinos, A. Widening of phononic transmission gaps via Anderson localization. Physical Review Letters, 94, 205503 (2005)
[6] Zhao, Y. C., Zhao, F., and Yuan, L. B. Numerical analysis of acoustic band gaps in twodimensional periodic materials. Journal of Marine Science and Application, 4, 65-69 (2005)
[7] Li, F. L. and Wang,Y. S. Application of Dirichlet-to-Neumann map to calculation of band gaps for scalar waves in two-dimensional phononic crystals. Acta Acustica United with Acustica, 97, 284-290 (2011)
[8] Yan, Z. Z. and Wang, Y. S. Wavelet-based method for calculating elastic band gaps of twodimensional phononic crystals. Physical Review B, 74, 224303 (2006)
[9] Yan, Z. Z., Zhang, C., and Wang, Y. S. Wave propagation and localization in randomly disordered layered composites with local resonances. Wave Motion, 47, 409-420 (2010)
[10] Vasseur, J. O., Deymier, P. A., Beaugeois, M., Pennec, Y., Djafari-Rouhani, B., and Prevost, D. Experimental observation of resonant filtering in a two-dimensional phononic crystal waveguide. Zeitschrift für Kristallographie, 220, 829-835 (2005)
[11] Rupp, C. J., Evgrafov, A., Maute, K., and Dunn, M. L. Design of phononic materials/structures for surface wave devices using topology optimization. Structural and Multidisciplinary Optimization, 34, 111-121 (2007)
[12] Sigalas, M. M. and Economou, E. N. Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158, 377-382 (1992)
[13] Wu, T. T., Huang, Z. G., and Lin, S. Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy. Physical Review B, 69, 094301 (2004)
[14] Kafesaki, M. and Economou, E. N. Multiple scattering theory for 3D periodic acoustic composites. Physical Review B, 60, 11993-12001 (1999)
[15] Mei, J., Liu, Z. Y., Shi, J., and Tian, D. Theory for elastic wave scattering by a two dimensional periodical array of cylinders: an ideal approach for band-structure calculations. Physical Review B, 67, 245107 (2003)
[16] Zhen, N., Li, F. L., Wang, Y. S., and Zhang, C. Bandgap calculation for plane mixed waves in 2D phononic crystals based on Dirichlte-to-Neumann map. Acta Mechanica Sinica, 28, 1143-1153 (2012)
[17] Zhen, N., Wang, Y. S., and Zhang, C. Surface/interface effect on band structures of nanosized phononic crystals. Mechanics Research Communications, 46, 81-89 (2012)
[18] Zhen, N.,Wang, Y. S., and Zhang, C. Bandgap calculation of in-plane waves in nanoscale phononic crystals taking account of surface/interface effects. Physics E, 54, 125-132 (2013)
[19] Axmann, W. and Kuchment, P. An efficient finite element method for computing spectra of photonic and acoustic band-gap materials: I, scalar case. Journal of Computational Physics, 150, 468-481 (1999)
[20] Li, J. B., Wang, Y. S., and Zhang, C. Dispersion relations of a periodic array of fluid-filled holes embedded in an elastic solid. Journal of Computational Acoustics, 20, 1250014 (2012)
[21] Wang, G., Wen, J., Liu, Y., and Wen, X. Lumped-mass method for the study of band structure in two-dimensional phononic crystals. Physical Review B, 69, 184302 (2004)
[22] Li, F. L., Wang, Y. S., Zhang, C., and Yu, G. L. Boundary element method for bandgap calculations of two-dimensional solid phononic crystals. Engineering Analysis with Boundary Elements, 37, 225-235 (2013)
[23] Li, F. L., Wang, Y. S., Zhang, C., and Yu, G. L. Bandgap calculations of two-dimensional solidfluid phononic crystals with the boundary element method. Wave Motion, 50, 525-541 (2013)
[24] Sigalas, M. M. and García, N. Importance of coupling between longitudinal and transverse components for the creation of acoustic band gaps: the aluminum in mercury case. Applied Physics Letters, 76, 2307-2309 (2000)
[25] Wu, Z. J., Wang, Y. Z., and Li, F. M. Analysis on band gap properties of periodic structures of bar system using the spectral element method. Waves in Random and Complex Media, 23, 349-372 (2013)
[26] Wu, Z. J., Li, F. M., andWang, Y. Z. Study on vibration characteristics in periodic plate structures using the spectral element method. Acta Mechanica, 224, 1089-1101 (2013)
[27] Shi, Z. J., Wang, Y. S., and Zhang, C. Z. Band structure calculation of scalar waves in twodimensional phononic crystals based on generalized multipole technique. Applied Mathematics and Mechanics (English Edition), 34, 1123-1144 (2013) DOI 10.1007/s10483-013-1732-6
[28] Leviatan, Y. and Boag, A. Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model. IEEE Transactions on Antennas and Propagation, 35, 1119-1127 (1987)
[29] Hafner, C. The Generalized Multipole Technique for Computational Electromagnetics, Artech House, Boston, 157-266 (1990)
[30] Reutskiy, S. Y. The method of fundamental solutions for Helmholtz eigenvalue problems in simply and multiply connected domains. Engineering Analysis with Boundary Elements, 30, 150-159 (2006)
[31] Pao, Y. H. and Mao, C. C. Diffraction of Elastic Waves and Dynamic Stress Concentration, Adam Hilger, U.K. (1973)
[32] Hafner, C. Post-Modern Electromagnetics: Using Intelligent Maxwell Solvers, John Wiley and Sons, New York (1999)
[33] Tayeb, G. and Enoch, S. Combined fictious sources-scattering-matrix method. Journal of the Optical Society of America A, 21, 1417-1423 (2004)
[34] Moreno, E., Erni, D., and Hafner, C. Band structure computations of metallic photonic crystals with the multiple multipole method. Physical Review B, 65, 155120 (2002)
[35] Smajic, J., Hafner, C., and Erni, D. Automatic calculation of band diagrams of photonic crystals using the multiple multipole method. Applied Computational Electromagnetics Society Journal, 18, 172-180 (2003)
[36] Bogdanov, E. G., Karkashadze, D. D., and Zaridze, R. S. The method of auxiliary sources in electromagnetic scattering problems. Generalized Multipole Techniques for Electromagnetic and Light Scattering (ed. Wriedt, T.), Elsevier, Amsterdam, 143-172 (1999)
[37] Goffaux, C. and Vigneron, J. P. Theoretical study of a tunable phononic band gap system. Physical Review B, 64, 075118 (2001) |