Applied Mathematics and Mechanics (English Edition) ›› 2018, Vol. 39 ›› Issue (11): 1661-1678.doi: https://doi.org/10.1007/s10483-018-2389-6
• Articles • Previous Articles Next Articles
B. LEKDIM, A. KHEMMOUDJ
Received:
2018-03-25
Revised:
2018-06-08
Online:
2018-11-01
Published:
2018-11-01
Contact:
A. KHEMMOUDJ
E-mail:akhemmoudj@yahoo.fr
2010 MSC Number:
B. LEKDIM, A. KHEMMOUDJ. General decay of energy to a nonlinear viscoelastic two-dimensional beam. Applied Mathematics and Mechanics (English Edition), 2018, 39(11): 1661-1678.
[1] COLEMAN, B. D. and NOLL, W. Foundations of linear viscoelasticity. Reviews of Modern Physics, 33, 239-249(1961) [2] COLEMAN, B. D. and MIZEL, V. J. On the general theory of fading memory. Archive for Rational Mechanics and Analysis, 29, 18-31(1968) [3] FABRIZIO, M. and MORRO, A. Mathematical problems in linear viscoelasticity. Mathematical Problems in Linear Viscoelasticity, Society for Industrial and Applied Mathematics Philadelphia, Pennsylvania (1992) [4] GE, S. S., HE, W., HOW, B. V. E., and CHOO, Y. S. Boundary control of a coupled nonlinear exible marine riser. IEEE Transactions on Control Systems and Technology, 18, 1080-1091(2010) [5] HE, W., GGE, S. S., and ZHANG, S. Adaptive boundary control of a exible marine installation system. Automatica, 47, 2728-2734(2011) [6] HE, W., ZHANG, S., and GE, S. S. Boundary control of a exible riser with the application to marine installation. Transactions on Industrial Electronics, 60, 5802-5810(2013) [7] NQUYEN, T. L., DO, K. D., and PAN, J. Boundary control of coupled nonlinear three dimensional marine risers. Journal of Marine Sciences and Application, 12, 72-88(2013) [8] PARK, J. Y., KANQ, H. K., and KIM, J. A. Existence and exponential stability for a EulerBernoulli beam equation with memory and boundary output feedback control term. Acta Applicandae Mathematicae, 104, 287-301(2008) [9] LAZZARI, B. and NIBBI, R. On the exponential decay of the Euler-Bernoulli beam with boundary energy dissipation. Journal of Mathematical Analysis and Applications, 389, 1078-1085(2012) [10] KANG, Y. H., PARK, J. Y., and KIM, J. A. A memory type boundary stabilization for an EulerBernoulli beam under boundary output feedback control. Journal of the Korean Mathematical Society, 49, 947-964(2012) [11] CAVALCANTI, M. M. Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete and Continuous Dynamical Systems, 8, 675-695(2002) [12] CAVALCANTI, M. M., DOMINGOS-CAVALCANTI, V. N., and MA, T. F. Exponential decay of the viscoelastic Euler-Bernoulli equation with a nonlocal dissipation in general domains. Differential and Integral Equations, 17, 495-510(2004) [13] CAVALCANTI, M. M., DOMINGOS-CAVALCANTI, V. N., and SORIANO, J. A. Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation. Communications in Contemporary Mathematics, 6, 705-731(2004) [14] CAVALCANTI, M. M., DOMINGOS-CAVALCANTI, V. N., and FERREIRA, J. Existence and uniform decay for a non-linear viscoelastic equation with strong damping. Mathematical Methodes in the Applied Sciences, 24, 1043-1053(2001) [15] CAVALCANTI, M. M., DOMINGOS-CAVALCANTI, V. N., and MARTINAZ, P. General decay rate estimates for viscoelastic dissipative systems. Nonlinear Analysis:Theory, Methods & Applications, 68, 177-193(2008) [16] BERKANI, A., TATAR, N. E., and KHEMMOUDJ, A. Control of a viscoelastic translational Euler-Bernoulli beam. Mathematical Methodes in the Applied Sciences, 40, 237-254(2017) [17] SEGHOUR, L., KHEMMOUDJ, A., and TATAR, N. E. Control of a riser through the dynamic of the vessel. Applicable Analysis, 95, 1957-1973(2016) [18] KELLECHE, A., TATAR, N. E., and KHEMMOUDJ, A. Uniform stabilization of an axially moving Kirchhoff string by a boundary control of memory type. Journal of Dynamical Control Systems, 23, 237-247(2016) [19] KELLECHE, A., TATAR, N. E., and KHEMMOUDJ, A. Stability of an axially moving viscoelastic beam. Journal of Dynamical Control Systems, 23, 283-299(2017) [20] ZHANG, Z. Y., MIAO, X. J., and YU, D. On solvability and stabilization of a class of hyperbolic hemivariational inequalities in elasticity. Funkcialaj Ecvacioj, 54, 297-314(2011) [21] ZHANG, Z. Y. and HUANG, J. On solvability of the dissipative Kirchhoff equation with nonlinear boundary damping. Bulletin Korean Mathematical Society, 51, 189-206(2014) [22] ZHANG, Z. Y. and MIAO, X. J. Global existence and uniform decay for wave equation with dissipative term and boundary damping. Computers and Mathematics with Applications, 59, 1003-1018(2010) [23] KOMORNIK, V. and ZUAZUA, E. A direct method for boundary stabilization of the wave equation. Journal de Mathématiques Pures et Appliquées, 69, 33-54(1990) [24] ZHANG, Z. Y., LIU, Z. H., MIAO, X. J., and CHEN, Y. Z. Stability analysis of heat flow with boundary time-varying delay effect. Nonlinear Analysis, 73, 1878-1889(2010) [25] ZHANG, Z. Y., LIU, Z. H., MIAO, X. J., and CHEN, Y. Z. A note on decay properties for the solutions of a class of partial differential equation with memory. International Journal of Applied Mathematics and Computer, 37, 85-102(2011) [26] ZHANG, Z. Y., LIU, Z. H., MIAO, X. J., and CHEN, Y. Z. Global existence and uniform stabilization of a generalized dissipative Klein-Gordon equation type with boundary damping. Journal of Mathematical Physics, 52, 023502(2011) [27] DAFERMOS, C. M. On abstract Volterra equations with applications to linear viscoelasticity. Journal of Differential Equations, 7, 554-569(1970) [28] DAFERMOS, C. M. Asymptotic stability in viscoelasticity. Archive for Rational Mechanics and Analysis, 37, 297-308(1970) [29] JIN, K. P., LIANG, J., and XIAO, T. J. Coupled second order evolution equations with fading memory:optimal energy decay rate. Journal of Differential Equations, 257, 1501-1528(2014) [30] BERRIMI, S. and MESSAOUDI, S. A. Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Analysis, 64, 2314-2331(2006) [31] CABANILLAS, E. L. and MUNOZ-RIVERA, J. E. Decay rates of solutions of an anisotropic inhomogeneous n-dimensional viscoelastic equation with polynomial decaying kernels. Communications in Mathematical Physics, 177, 583-602(1996) [32] HRUSA, W. J. Global existence and asymptotic stability for a semilinear Volterra equation with large initial data. SIAM Journal of Mathematical Analysis, 16, 110-134(1985) [33] MESSAOUDI, S. A. and TATAR, N. E. Global existence and uniform stability of solutions for a quasilinear viscoelastic problem. Mathematical Methodes in the Applied Sciences, 30, 665-680(2007) [34] MUNOZ-RIVERA, J. E. Asymptotic behavior in linear viscoelasticity. Quarterly of Applied Mathematics, 52(4), 628-648(1994) [35] ALABAU-BOUSSOUIRA, F., CANNARSA, P., and SFORZA, D. Decay estimates for the second order evolution equation with memory. Journal of Functional Analysis, 245, 1342-1372(2008) [36] CANNARSA, P. and SFORZA, D. Integro-differential equations of hyperbolic type with positive definite kernels. Journal of Differential Equations, 250, 4289-4335(2011) [37] MUNOZ-RIVERA, J. E. and NASO, M. G. On the decay of the energy for systems with memory and indefinite dissipation. Asymptotic Analysis, 49, 189-204(2006) [38] MUNOZ-RIVERA, J. E., NASO, M. G., and VEGNI, F. M. Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory. Journal of Mathematical Analysis and Applications, 286, 692-704(2003) [39] CAVALCANTI, M. M., DOMINGOS-CAVALCANTI, V. N., and FERREIRA, J. Existence and uniform decay for nonlinear viscoelastic equation with strong damping. Mathematical Methodes in the Applied Sciences, 24, 1043-1053(2001) [40] MESSAOUDI, S. A. General decay of solutions of a viscoelastic equation. Journal of Mathematical Analysis and Applications, 341, 1457-1467(2008) [41] MESSAOUDI, S. A. General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Analysis, 69, 2589-2598(2008) [42] HAN, X. I. and WANG, M. General decay of energy for a viscoelastic equation with nonlinear damping. Mathematical Methodes in the Applied Sciences, 32, 346-358(2009) [43] LIU, W. J. General decay rate estimate for a viscoelastic equation with weakly nonlinear timedependent dissipation and source terms. Journal of Mathematical Physics, 50, 113506(2009) [44] LIU, W. J. General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source. Nonlinear Analysis, 73, 1890-1904(2010) [45] LASIECKA, I. and TATARU, D. Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping. Differential and Integral Equations, 8, 507-533(1993) [46] ALABAU-BOUSSOUIRA, F. and CANNARSA, P. A general method for proving sharp energy decay rates for memory-dissipative evo-lution equations. Comptes Rendus de l'Académie des Sciences Paris, Serie I, 347, 867-872(2009) [47] MUSTAFA, M. I. and MESSAOUDI, S. A. General stability result for viscoelastic wave equations. Journal of Mathematical Physics, 53, 053702(2012) [48] CAVALCANTI, M. M., CAVALCANTI, A. N. D., LASIECKA, I., and WANG, X. Existence and sharp decay rate estimates for a von Karman system with long memory. Nonlinear Analysis Real World Applications, 22, 289-306(2015) [49] CAVALCANTI, M. M., CAVALCANTI, A. N. D., LASIECKA, I., and Nascimento, F. A. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete and Continuous Dynamical Systems. Series B, 19, 1987-2012(2014) [50] CAVALCANTI, M. M., CAVALCANTI, A. N. D., LASIECKA, I., and WEBLER, C. M. Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density. Advances in Nonlinear Analysis, 6, 121-145(2017) [51] GUESMIA, A. Asymptotic stability of abstract dissipative systems with infinite memory. Journal of Mathematical Analysis and Applications, 382, 748-760(2011) [52] LASIECKA, I., MESSAOUDI, S. A., and MUSTAFA, M. I. Note on intrinsic decay rates for abstract wave equations with memory. Journal of Mathematical Physics, 54, 031504(2013) [53] LASIECKA, I. and WANG, X. Intrinsic decay rate estimates for semilinear abstract second order equations with memory. New Prospects in Direct, Inverse and Control Problems for Evolution Equations, Springer, Chambridge (2014) [54] MESSAOUDI, S. A. General decay of solutions of a viscoelastic equation. Journal of Mathematical Analysis and Applications, 341, 1457-1467(2008) [55] MESSAOUDI, S. A. General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Analysis, 69, 2589-2598(2008) [56] DO, K. D. and PAN, J. Boundary control of transverse motion of marine risers with actuator dynamics. Journal of Sound and Vibration, 318, 768-791(2008) [57] HARDY, G. H., LITTLEWOOD, J. E., and POLYA, G. Inequalities, Cambridge University Press, Cambridge (1959) [58] RAHN, C. D. Mechantronic Control of Distributed Noise and Vibration, Springer, New York (2001) [59] AUBIN, J. P. Un théorème de compacité. Comptes Rendus de l'Acadéie des Sciences Paris, 256, 5042-5044(1963) [60] LIONS, J. L. Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris (1969) [61] ZHENG, S. Nonlinear evolution equations. Pitman series Monographs and Survey in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton (2004) [62] ARARUNA, F. D., BRAZ, E., SILVA, P., and ZUAZUA, E. Asymptotic limits and stabilization for the 1d nonlinear Mindlin-Timoshenko system. Journal of Systems Science and Complexity, 23, 1-17(2010) |
[1] | Zhimin CHEN, W. G. PRICE. Secondary steady-state and time-periodic flows from a basic flow with square array of odd number of vortices [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(3): 447-458. |
[2] | Peng WANG, Shaopu YANG, Yongqiang LIU, Pengfei LIU, Xing ZHANG, Yiwei ZHAO. Research on hunting stability and bifurcation characteristics of nonlinear stochastic wheelset system [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(3): 431-446. |
[3] | Lele WANG, Liang WANG, Yueting ZHU, Zhanli LIU, Yongtao SUN, Jie WANG, Hongge HAN, Shuyi XIANG, Huibin SHI, Qian DING. Nonlinear dynamic response and stability analysis of the stapes reconstruction in human middle ear [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1739-1760. |
[4] | A. MOSLEMI, M. R. HOMAEINEZHAD. Effects of viscoelasticity on the stability and bifurcations of nonlinear energy sinks [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 141-158. |
[5] | Yaode YIN, Demin ZHAO, Jianlin LIU, Zengyao XU. Nonlinear dynamic analysis of dielectric elastomer membrane with electrostriction [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 793-812. |
[6] | Lei LI, Hanbiao LIU, Jianxin HAN, Wenming ZHANG. Nonlinear modal coupling in a T-shaped piezoelectric resonator induced by stiffness hardening effect [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 777-792. |
[7] | K. DEVARAJAN, B. SANTHOSH. Nonlinear dynamics and performance analysis of modified snap-through vibration energy harvester with time-varying potential function [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(2): 185-202. |
[8] | Dengbo ZHANG, Youqi TANG, Ruquan LIANG, Yuanmei SONG, Liqun CHEN. Internal resonance of an axially transporting beam with a two-frequency parametric excitation [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1805-1820. |
[9] | J. R. FERNÁNDEZ, R. QUINTANILLA. Moore-Gibson-Thompson theory for thermoelastic dielectrics [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(2): 309-316. |
[10] | Mengjiao HUA, Yu WU. Bifurcation in most probable phase portraits for a bistable kinetic model with coupling Gaussian and non-Gaussian noises [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(12): 1759-1770. |
[11] | Junda LI, Jianliang HUANG. Subharmonic resonance of a clamped-clamped buckled beam with 1:1 internal resonance under base harmonic excitations [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(12): 1881-1896. |
[12] | Li MA, Minghui YAO, Wei ZHANG, Dongxing CAO. Bifurcation and dynamic behavior analysis of a rotating cantilever plate in subsonic airflow [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(12): 1861-1880. |
[13] | Yaji WANG, Hang XU, Q. SUN. New groups of solutions to the Whitham-Broer-Kaup equation [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(11): 1735-1746. |
[14] | Yingjie WANG, Qichang ZHANG, Wei WANG, Tianzhi YANG. In-plane dynamics of a fluid-conveying corrugated pipe supported at both ends [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(8): 1119-1134. |
[15] | Chuanshi SUN, Shuang LIU, Qi WANG, Zhenhua WAN, Dejun SUN. Bifurcations in penetrative Rayleigh-Bénard convection in a cylindrical container [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(5): 695-704. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||