[1] Hay, J., Johnson, V. E., Smith, D. H., and Stewart, W. Chronic traumatic encephalopathy:the neuropathological legacy of traumatic brain injury. Annual Review of Pathology, 11, 21-45(2016)
[2] Tagliaferri, F., Compagnone, C., Korsic, M., Servadei, F., and Kraus, J. A systematic review of brain injury epidemiology in Europe. Acta Neurochirurgica, 148, 255-268(2006)
[3] Lazarus, C., Soheilypour, M., and Mofrad, M. R. Torsional behavior of axonal microtubule bundles. Biophysical Journal, 109, 231-239(2015)
[4] Lang, G. E., Waters, S. L., Vella, D., and Goriely, A. Axonal buckling following stretch injury. Journal of Elasticity, 11, 1-18(2017)
[5] Emilia, P., Grzegorz, W., Anna, S. O., Patryk, J., and El·zbieta, S. The comparison of the value of CT imaging and selected MRI sequences (including DWI) in the evaluation of axonal injuries. Polish Journal of Radiology, 75, 13-17(2010)
[6] Wright, R. M. and Ramesh, K. T. An axonal strain injury criterion for traumatic brain injury. Biomechanics and Modeling in Mechanobiology, 11, 245-260(2012)
[7] Donald, C. L. M., Dikranian, K., Song, S. K., Bayly, P. V., Holtzman, D. M., and Brody, D. L. Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Experimental Neurology, 205, 116-131(2007)
[8] Bennett, R. E., Donald, C. L. M., and Brody, D. L. Diffusion tensor imaging detects axonal injury in a mouse model of repetitive closed-skull traumatic brain injury. Neuroscience Letters, 513, 160-165(2012)
[9] Conde, C. and Cáceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nature Reviews Neuroscience, 10, 319-332(2009)
[10] Pampaloni, F., Lattanzi, G., Jonás, A., Surrey, T., Frey, E., and Florin, E. L. Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. Proceedings of the National Academy of Sciences, 103, 10248-10253(2006)
[11] Chen, J., Kanai, Y., Cowan, N. J., and Hirokawa, N. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. nature, 360, 674-677(1992)
[12] Ahmadzadeh, H., Smith, D. H., and Shenoy, V. B. Viscoelasticity of tau proteins leads to strain rate-dependent breaking of microtubules during axonal stretch injury:predictions from a mathematical model. Biophysical Journal, 106, 1123-1133(2014)
[13] Goldstein, L. S. and Yang, Z. Microtubule-based transport systems in neurons:the roles of kinesins and dyneins. Annual Review of Neuroscience, 23, 39-71(2000)
[14] Lu, W. and Gelfand, V. I. Moonlighting motors:kinesin, dynein, and cell polarity. Trends in Cell Biology, 27, 505-514(2017)
[15] Schaedel, L., John, K., Gaillard, J., Nachury, M. V., Blanchoin, L., and Théry, M. Microtubules self-repair in response to mechanical stress. Nature Materials, 14, 1156-1163(2015)
[16] Rooij, R., Miller, K. E., and Kuhl, E. Modeling molecular mechanisms in the axon. Computational Mechanics, 59, 1-15(2016)
[17] Kis, A., Kasas, S., Babi?, B., Kulik, A. J., Benoît, W., Briggs, G. A. D., Schönenberger, C., Catsicas, S., and Forró, L. Nanomechanics of microtubules. Physical Review Letters, 89, 248101(2002)
[18] Reeves, A. G. and Swenson, R. S. Chapter 29:cranial and spinal trauma. Disorders of the Nervous System, a Primer. http://www.dartmouth.edu/~dons/.(2004)
[19] Meaney, D. F., Smith, D. H., Shreiber, D. I., Bain, A. C., Miller, R. T., Ross, D. T., and Gennarelli, T. A. Biomechanical analysis of experimental diffuse axonal injury. Journal of Neurotrauma, 12, 689-694(1995)
[20] Gennarelli, T. A., Thibault, L. E., Adams, J. H., Graham, D. I., Thompson, C. J., and Marcincin, R. P. Diffuse axonal injury and traumatic coma in the primate. Annals of Neurology, 12, 564-574(1982)
[21] Thibault, L., Gennarelli, T., and Margulies, S. S. The strain dependent pathophysiological consequences of inertial loading on central nervous system tissue. International Conference on the Biomechanics of Impacts, Bron, France (1990)
[22] Ivancevic, V. G. New mechanics of traumatic brain injury. Cognitive Neurodynamics, 3, 281-293(2009)
[23] Zhang, L., Yang, K. H., and King, A. I. A proposed injury threshold for mild traumatic brain injury. Transactions-American Society of Mechanical Engineers Journal of Biomechanical Engineering, 126, 226-236(2004)
[24] Ku?era, O., Havelka, D., and Cifra, M. Vibrations of microtubules:physics that has not met biology yet. Wave Motion, 72, 13-22(2016)
[25] Zhang, J. and Wang, C. Boundary condition-selective length dependence of the flexural rigidity of microtubules. Physics Letters A, 381, 2167-2173(2017)
[26] Zhang, J. and Wang, C. Molecular structural mechanics model for the mechanical properties of microtubules. Biomechanics and Modeling in Mechanobiology, 13, 1175-1184(2014)
[27] Yasuda, R., Miyata, H., and Kinosita, K., Jr. Direct measurement of the torsional rigidity of single actin filaments. Journal of Molecular Biology, 263, 227-236(1996)
[28] Kikumoto, M., Kurachi, M., Tosa, V., and Tashiro, H. Flexural rigidity of individual microtubules measured by a buckling force with optical traps. Biophysical Journal, 90, 1687-1696(2006)
[29] Tsuda, Y., Yasutake, H., Ishijima, A., and Yanagida, T. Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation. Proceedings of the National Academy of Sciences, 93, 12937-12942(1996)
[30] Yi, L., Chang, T., and Ru, C. Buckling of microtubules under bending and torsion. Journal of Applied Physics, 103, 103516(2008)
[31] Che lminiak, P., Dixon, J., and Tuszyński, J. Torsional elastic deformations of microtubules within continuous sheet model. The European Physical Journal E, 31, 215-227(2010)
[32] Demir, C. and Civalek, Ö. Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Applied Mathematical Modelling, 37, 9355-9367(2013)
[33] Johnson, V. E., Weber, M. T., Xiao, R., Cullen, D. K., Meaney, D. F., Stewart, W., and Smith, D. H. Mechanical disruption of the blood-brain barrier following experimental concussion. Acta Neuropathologica (2018) https://doi.org/10.1007/s00401-018-1824-0
[34] Tangschomer, M. D., Patel, A. R., Baas, P. W., and Smith, D. H.Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. The FASEB Journal, 24, 1401-1410(2010)
[35] Ahmadzadeh, H., Smith, D. H., and Shenoy, V. B. Mechanical effects of dynamic binding between tau proteins on microtubules during axonal injury. Biophysical Journal, 109, 2328-2337(2015)
[36] Gao, H., Ji, B., Jäger, I., Arzt, E., and Fratzl, P. Materials become insensitive to flaws at nanoscale:lessons from nature. Proceedings of the National Academy of Sciences, 100, 5597-5600(2003)
[37] Gao, H., Ji, B., Buehler, M. J., and Yao, H. Flaw tolerant nanostructures of biological materials. Mechanics of the 21st Century, Springer, Dordrecht, 131-138(2005)
[38] Singh, A., Kallakuri, S., Chen, C., and Cavanaugh, J. M. Structural and functional changes in nerve roots due to tension at various strains and strain rates:an in-vivo study. Journal of Neurotrauma, 26, 627-640(2009)
[39] Shamloo, A., Manuchehrfar, F., and Rafii-Tabar, H. A viscoelastic model for axonal microtubule rupture. Journal of Biomechanics, 48, 1241-1247(2015)
[40] Cloots, R. J. H., van Dommelen, J. A. W., Kleiven, S., and Geers, M. G. D. Multi-scale mechanics of traumatic brain injury:predicting axonal strains from head loads. Biomechanics and Modeling in Mechanobiology, 12, 1-14(2013)
[41] Wegmann, S., Schöler, J., Bippes, C. A., Mandelkow, E., and Muller, D. J. Competing interactions stabilize pro-and anti-aggregant conformations of human tau. Journal of Biological Chemistry, 286, 20512-20524(2011)
[42] Fadi?, R., Vergara, J., and Alvarez, J. Microtubules and caliber of central and peripheral processes of sensory axons. Journal of Comparative Neurology, 236, 258-264(1985)
[43] Peter, S. J. and Mofrad, M. R. Computational modeling of axonal microtubule bundles under tension. Biophysical Journal, 102, 749-757(2012)
[44] Huang, G., Mai, Y., and Ru, C. Surface deflection of a microtubule loaded by a concentrated radial force. Nanotechnology, 19, 125101(2008)
[45] Spillantini, M. G. and Goedert, M. Tau protein pathology in neurodegenerative diseases. Trends in Neurosciences, 21, 428-433(1998)
[46] Hirokawa, N., Shiomura, Y., and Okabe, S. Tau proteins:the molecular structure and mode of binding on microtubules. The Journal of Cell Biology, 107, 1449-1459(1988)
[47] Kawakami, M., Byrne, K., Brockwell, D. J., Radford, S. E., and Smith, D. A. Viscoelastic study of the mechanical unfolding of a protein by AFM. Biophysical Journal, 91, L16-L18(2006)
[48] Bell, G. I. Models for the specific adhesion of cells to cells. Science, 200, 618-627(1978)
[49] Rosenberg, K. J., Ross, J. L., Feinstein, H. E., Feinstein, S. C., and Israelachvili, J. Complementary dimerization of microtubule-associated tau protein:implications for microtubule bundling and tau-mediated pathogenesis. Proceedings of the National Academy of Sciences, 105, 7445-7450(2008)
[50] Goriely, A., Geers, M. G. D., Holzapfel, G. A., Jayamohan, J., Jérusalem, A., Sivaloganathan, S., Squier, W., van Dommelen, J. A. W., Waters, S., and Kuhl, E. Mechanics of the brain:perspectives, challenges, and opportunities. Biomechanics and Modeling in Mechanobiology, 14, 931-965(2015)
[51] Wu, J., Yuan, H., Li, L., Fan, K., Qian, S., and Li, B. Viscoelastic shear lag model to predict the micromechanical behavior of tendon under dynamic tensile loading. Journal of Theoretical Biology, 437, 202-213(2018)
[52] Soheilypour, M., Peyro, M., Peter, S. J., and Mofrad M. R. K. Buckling behavior of individual and bundled microtubules. Biophysical Journal, 108, 1718-1726(2015)
[53] Aumeier, C., Schaedel, L., Gaillard, J., John, K., Blanchoin, L., and Théry, M. Self-repair promotes microtubule rescue. Nature Cell Biology, 18, 1054-1064(2016)
[54] McKee, A. C., Cantu, R. C., Nowinski, C. J., Hedleywhyte, E. T., Gavett, B. E., Budson, A. E., Santini, V. E., Lee, H. S., Kubilus, C. A., and Stern, R. A. Chronic traumatic encephalopathy in athletes:progressive tauopathy after repetitive head injury. Journal of Neuropathology and Experimental Neurology, 68, 709-735(2009)
[55] Vandenbedem, H. and Kuhl, E. Tau-ism:the Yin and Yang of microtubule sliding, detachment, and rupture. Biophysical Journal, 109, 2215-2217(2015) |