Applied Mathematics and Mechanics (English Edition) ›› 2020, Vol. 41 ›› Issue (3): 521-532.doi: https://doi.org/10.1007/s10483-020-2581-5
• Articles • Previous Articles
S. A. SHEHZAD1, S. U. KHAN1, Z. ABBAS2, A. RAUF1
Received:
2019-08-02
Revised:
2019-11-25
Online:
2020-03-01
Published:
2020-02-17
Contact:
S. A. SHEHZAD
E-mail:ali_qau70@yahoo.com
2010 MSC Number:
S. A. SHEHZAD, S. U. KHAN, Z. ABBAS, A. RAUF. A revised Cattaneo-Christov micropolar viscoelastic nanofluid model with combined porosity and magnetic effects. Applied Mathematics and Mechanics (English Edition), 2020, 41(3): 521-532.
[1] | CATTANEO, C. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena, 3, 83-101(1949) |
[2] | CHRISTOV, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction. Mechanics Research Communications, 36, 481-486(2009) |
[3] | HAN, S., ZHENG, L., LI, C., and ZHANG, X. Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model. Applied Mathematics Letters, 38, 87-93(2014) |
[4] | ANJUM, A., MIR, N. A., FAROOQ, M., JAVED, M., AHMAD, S., MALIK, M. Y., and ALSHOMRANI, A. S. Physical aspects of heat generation/absorption in the second grade fluid flow due to Riga plate:application of Cattaneo-Christov approach. Results in Physics, 9, 955-960(2018) |
[5] | HAYAT, T., MUHAMMAD, T., and ALSAEDI, A. On three-dimensional flow of couple stress fluid with Cattaneo-Christov heat flux. Chinese Journal of Physics, 55, 930-938(2017) |
[6] | ABBASI, F. M. and SHEHZAD, S. A. Heat transfer analysis for three-dimensional flow of Maxwell fluid with temperature dependent thermal conductivity:application of Cattaneo-Christov heat flux model. Journal of Molecular Liquids, 220, 848-854(2016) |
[7] | LI, J., ZHENG, L., and LIU, L. MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects, Journal of Molecular Liquids, 221, 19-25(2016) |
[8] | MUSTAFA, M. Cattaneo-Christov heat flux model for rotating flow and heat transfer of upperconvected Maxwell fluid. AIP Advances, 5, 047109(2015) |
[9] | RAUF, A., ABBAS, Z., and SHEHZAD, S. A. Utilization of Maxwell-Cattaneo law for MHD swirling flow through oscillatory disk subject to porous medium. Applied Mathematics and Mechanics (English Edition), 40, 837-850(2019) https://doi.org/10.1007/s10483-019-2488-9 |
[10] | CHOI, S. U. S. Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, 99-105(1995) |
[11] | BUONGIORNO, J. Convective transport in nanofluids. Journal of Heat Transfer, 128, 240-250(2006) |
[12] | BABU, M. J. and SANDEEP, N. Three-dimensional MHD slip flow of nanofluids over a slendering stretching sheet with thermophoresis and Brownian motion effects. Advanced Powder Technology, 27, 2039-2050(2016) |
[13] | RAJU, C. S. K., BABU, M. J., SANDEEP, N., and KRISHNA, P. M. Influence of non-uniform heat source/sink on MHD nanofluid flow over a moving vertical plate in porous medium. International Journal of Scientific & Engineering Research, 6, 31-42(2015) |
[14] | JING, L., LIU, L., ZHENG, L., and MOHSIN, B. B. Unsteady MHD flow and radiation heat transfer of nanofluid in a finite thin film with heat generation and thermophoresis. Journal of the Taiwan Institute of Chemical Engineers, 67, 226-234(2016) |
[15] | BHATTI, M. M. and RASHIDI, M. M. Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. Journal of Molecular Liquids, 21, 567-573(2016) |
[16] | SHEIKHOLESLAMI, M., RASHIDI, M. M., and GANJI, D. D. Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4 water nanofluid. Computers Methods in Applied Mechanics and Engineering, 294, 299-312(2015) |
[17] | RASHIDI, M. M., FREIDOONIMEHR, N., HOSSEINI, A., BEG, O. A., and HUNG, T. K. Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration. Meccanica, 49, 469-482(2014) |
[18] | HAYAT, T., MUHAMMAD, K., FAROOQ, M., and ALSAEDI, A. Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface. AIP Advances, 6, 015214(2016) |
[19] | ERINGEN, A. C. Microcontinuum Field Theories I & II, Springer, New York (2001) |
[20] | ERINGEN, A. C. Simple micro fluids. International Journal of Engineering Science, 2, 205-217(1964) |
[21] | ERINGEN, A. C. Theory of micropolar fluid. Journal of Mathematics and Mechanics, 16, 1-18(1966) |
[22] | ERINGEN, A. C. Theory of thermomicro fluids. Journal of Mathematical Analysis and Applications, 38, 480-496(1972) |
[23] | EL-KABEIR, S. M. M. Hiemenz flow of micropolar viscoelastic fluid in hydromagnetics. Canadian Journal of Physics, 83, 1007-1017(2005) |
[24] | TURKYILMAZOGLU, M. Flow of a micropolar fluid due to a porous stretching sheet and heat transfer. International Journal of Non-Linear Mechanics, 83, 59-64(2016) |
[25] | HAYAT, T., KHAN, M. I., WAQAS, M., ALSAEDI, A., and KHAN, M. I. Radiative flow of micropolar nanofluid accounting thermophoresis and Brownian moment. International Journal of Hydrogen Energy, 42, 16821-16833(2017) |
[26] | MISHRA, S. R., KHAN, I., AL-MDALLAL, Q. M., and ASIF, T. Free convective micropolar fluid flow and heat transfer over a shrinking sheet with heat source. Case Studies in Thermal Engineering, 11, 113-119(2018) |
[27] | ZUBAIR, M., WAQAS, M., HAYAT, T., AYUB, M., and ALSAEDI, A. The onset of modified Fourier and Fick's theories in temperature dependent, conductivity flow of micropolar liquid. Results in Physics, 7, 3145-3152(2017) |
[28] | SUI, J., ZHAO, P., CHENG, Z., ZHENG, L., and ZHANG, X. A novel investigation of a micropolar fluid characterized by nonlinear constitutive diffusion model in boundary layer flow and heat transfer. Physics of Fluids, 29, 023105(2017) |
[29] | ABBAS, Z., SHEIKH, M., and SAJID, M. Hydromagnetic stagnation point flow of a micropolar viscoelastic fluid towards a stretching/shrinking sheet in the presence of heat generation. Canadian Journal of Physics, 92, 1113-1123(2014) |
[30] | LIAO, S. J. Advances in the Homotopy Analysis Method, World Scientific Publishing, Singapore (2014) |
[31] | TURKYILMAZOGLU, M. Some issues on HPM and HAM methods:a convergence scheme. Mathematical and Computer Modelling, 53, 1929-1936(2011) |
[32] | TURKYILMAZOGLU, M. The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface. International Journal Mechanical Sciences, 77, 263-268(2013) |
[33] | MERAJ, M. A., SHEHZAD, S. A., HAYAT, T., ABBASI, F. M., and ALSAEDI, A. Darcy-Forchheimer flow of variable conductivity Jeffrey liquid with Cattaneo-Christov heat flux theory. Applied Mathematics and Mechanics (English Edition), 38, 557-566(2017) https://doi.org/10.1007/s10483-017-2188-6 |
[34] | SHEHZAD, S. A. Magnetohydrodynamic Jeffrey nanoliquid flow with thermally radiative Newtonian heat and mass species. Revista Mexicana de Fisica, 64, 628-633(2018) |
[35] | KHAN, S. U., SHEHZAD, S. A., and NASIR, S. Unsteady flow of chemically reactive OldroydB fluid over oscillatory moving surface with thermos-diffusion and heat absorption/generation effects. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 72(2019) |
[36] | KHAN, S. U., RAUF, A., SHEHZAD, S. A., ABBAS, Z., and JAVED, T. Study of bioconvection flow in Oldroyd-B nanofluid with motile organisms and effective Prandtl approach. Physica A:Statistical Mechanics and its Applications, 527, 121179(2019) |
[1] | N. HUMNEKAR, D. SRINIVASACHARYA. Influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 563-580. |
[2] | L. I. KUZMINA, Y. V. OSIPOV, A. R. PESTEREV. Deep bed filtration model for cake filtration and erosion [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 355-372. |
[3] | L. ANITHA, B. J. GIREESHA. Convective flow of Jeffrey nanofluid along an upright microchannel with Hall current and Buongiorno model: an irreversibility analysis [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1613-1628. |
[4] | S. I. ABDELSALAM, A. Z. ZAHER. Biomimetic amelioration of zirconium nanoparticles on a rigid substrate over viscous slime—a physiological approach [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1563-1576. |
[5] | I. WAINI, A. ISHAK, I. POP. Magnetohydrodynamic flow past a shrinking vertical sheet in a dusty hybrid nanofluid with thermal radiation [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 127-140. |
[6] | Tiehong ZHAO, M. R. KHAN, Yuming CHU, A. ISSAKHOV, R. ALI, S. KHAN. Entropy generation approach with heat and mass transfer in magnetohydrodynamic stagnation point flow of a tangent hyperbolic nanofluid [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1205-1218. |
[7] | J. K. MADHUKESH, G. K. RAMESH, B. C. PRASANNAKUMARA, S. A. SHEHZAD, F. M. ABBASI. Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1191-1204. |
[8] | M. G. REDDY, S. A. SHEHZAD. Molybdenum disulfide and magnesium oxide nanoparticle performance on micropolar Cattaneo-Christov heat flux model [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(4): 541-552. |
[9] | K. RAMESH, M. G. REDDY, B. SOUAYEH. Electro-magneto-hydrodynamic flow of couple stress nanofluids in micro-peristaltic channel with slip and convective conditions [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(4): 593-606. |
[10] | Yuming CHU, M. I. KHAN, M. I. U. REHMAN, S. KADRY, S. QAYYUM, M. WAQAS. Stability analysis and modeling for the three-dimensional Darcy-Forchheimer stagnation point nanofluid flow towards a moving surface [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(3): 357-370. |
[11] | S. A. SHEHZAD, M. SHEIKHOLESLAMI, T. AMBREEN, A. SALEEM, A. SHAFEE. Numerically simulated behavior of radiative Fe3O4 and multi-walled carbon nanotube hybrid nanoparticle flow in presence of Lorentz force [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(3): 347-356. |
[12] | B. MAHANTHESH, K. THRIVENI. Nanoparticle aggregation effects on radiative heat transport of nanoliquid over a vertical cylinder with sensitivity analysis [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(3): 331-346. |
[13] | Ruifang SHI, Jianzhong LIN, Hailin YANG, Mingzhou YU. Distribution of non-spherical nanoparticles in turbulent flow of ventilation chamber considering fluctuating particle number density [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(3): 317-330. |
[14] | T. HAYAT, K. MUHAMMAD, A. ALSAEDI. Melting effect and Cattaneo-Christov heat flux in fourth-grade material flow through a Darcy-Forchheimer porous medium [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(12): 1787-1798. |
[15] | N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Unsteady flow of a Maxwell hybrid nanofluid past a stretching/shrinking surface with thermal radiation effect [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(10): 1511-1524. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||