[1] LU, Z. Q., YANG, T. J., BRENNAN, M. J., LIU, Z. G., and CHEN, L. Q. Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness. Journal of Applied Mechanics-Transactions of the ASME, 84, 021001(2017) [2] XUE, J. R., ZHANG, Y. W., DING, H., and CHEN, L. Q. Vibration reduction evaluation of a linear system with a nonlinear energy sink under harmonic and random excitation. Applied Mathematics and Mechanics (English Edition), 41(1), 1-14(2020) https://doi.org/10.1007/s10483-020-2560-6 [3] QU, Y. G., XIE, F. T., and MENG, G. Nonlinear dynamic and acoustic analysis of orthogonally stiffened composite laminated cylindrical shells containing piecewise isolators. Journal of Sound and Vibration, 456, 199-220(2019) [4] LU, Z. Q., BRENNAN, M., DING, H., and CHEN, L. Q. High-static-low-dynamic-stiffness vibration isolation enhanced by damping nonlinearity. Science China Technological Sciences, 62, 1103-1110(2019) [5] MORADPOUR, S. and DEHESTANI, M. Optimal DDBD procedure for designing steel structures with nonlinear fluid viscous dampers. Structures, 22, 154-174(2019) [6] CHEN, X. Q., SHEN, Z. P., HE, Q. S., DU, Q., and LIU, X. E. Influence of uncertainty and excitation amplitude on the vibration characteristics of rubber isolators. Journal of Sound and Vibration, 377, 216-225(2016) [7] LU, Z. Q., HU, G. S., DING, H., and CHEN, L. Q. Jump-based estimation for nonlinear stiffness and damping parameters. Journal of Vibration and Control, 25, 325-335(2019) [8] TANG, B. and BRENNAN, M. J. A comparison of two nonlinear damping mechanisms in a vibration isolator. Journal of Sound and Vibration, 332, 510-520(2013) [9] HO, C., LANG, Z. Q., and BILLINGS, S. A. A frequency domain analysis of the effects of nonlinear damping on the Duffing equation. Mechanical Systems and Signal Processing, 45, 49-67(2014) [10] YANG, J., XIONG, Y. P., and XING, J. T. Vibration power flow and force transmission behaviour of a nonlinear isolator mounted on a nonlinear base. International Journal of Mechanical Sciences, 115, 238-252(2016) [11] LV, Q. B. and YAO, Z. Y. Analysis of the effects of nonlinear viscous damping on vibration isolator. Nonlinear Dynamics, 79, 2325-2332(2015) [12] HUANG, X. C., SUN, J. Y., HUA, H. X., and ZHANG, Z. Y. The isolation performance of vibration systems with general velocity-displacement-dependent nonlinear damping under base excitation:numerical and experimental study. Nonlinear Dynamics, 85, 777-796(2016) [13] BREWICK, P. T., MARSI, S. F., CARBONI, B., and LACARBONARA, W. Data-based nonlinear identification and constitutive modeling of hysteresis in nitinol and steel strands. Journal of Engineering Mechanics, 142, 04016107(2016) [14] ZHAO, Z. W., WU, J. J., LIANG, B., LIU, H. Q., and SUN, Q. W. Numerical investigations on mechanical behavior of friction damped post-tensioned steel connections. Archive of Applied Mechanics, 88, 2247-2260(2018) [15] FOTI, F., MARTINELLI, L., and PEROTTI, F. A new approach to the definition of self-damping for stranded cables. Meccanica, 51, 2827-2845(2016) [16] AMJADIAN, M. and AGRAWAL, A. K. Modeling, design, and testing of a proof-of-concept prototype damper with friction and eddy current damping effects. Journal of Sound and Vibration, 413, 225-249(2018) [17] GU, X. Y., YU, Y., LI, Y. C., LI, J. C., ASKARI, M., and SAMALI, B. Experimental study of semi-active magnetorheological elastomer base isolation system using optimal neuro fuzzy logic control. Mechanical Systems and Signal Processing, 119, 380-398(2019) [18] KIANI, M. and VASEGHI-AMIRI, J. Effects of hysteretic damping on the seismic performance of tuned mass dampers. Structural Design of Tall and Special Buildings, 28, e1555(2019) [19] ZHANG, Y. W., XU, K. F., ZANG, J., NI, Z. Y., ZHU, Y. P., and CHEN, L. Q. Dynamic design of a nonlinear energy sink with NiTiNOL-steel wire ropes based on nonlinear output frequency response functions. Applied Mathematics and Mechanics (English Edition), 40(12), 1791-1804(2019) https://doi.org/10.1007/s10483-019-2548-9 [20] MARKOU, A. A. and MANOLIS, G. D. Mechanical formulations for bilinear and trilinear hysteretic models used in base isolators. Bulletin of Earthquake Engineering, 14, 3591-3611(2016) [21] SAUTER, D. and HAGEDORN, P. On the hysteresis of wire cables in Stockbridge dampers. International Journal of Non-Linear Mechanics, 37, 1453-1459(2002) [22] CASINI, P. and VESTRONI, F. Nonlinear resonances of hysteretic oscillators. Acta Mechanica, 229, 939-952(2018) [23] BARBIERI, N., BARBIERI, R., SILVA, R. A., MANNALA, M. J., and BARBIERI, L. S. V. Nonlinear dynamic analysis of wire-rope isolator and Stockbridge damper. Nonlinear Dynamics, 86, 501-512(2016) [24] CARBONI, W. and LACARBONARA, W. Nonlinear vibration absorber with pinched hysteresis:theory and experiments. Journal of Engineering Mechanics, 142, 04016023(2016) [25] SOLOVYOV, A. M., SEMENOV, M. E., MELESHENKO, P. A., and BARSUKOV, A. I. BoucWen model of hysteretic damping. Procedia Engineering, 201, 549-555(2017) [26] LIU, T., BRISEGHELLA, B., ZHANG, Q. L., and ZORDAN, T. Equivalent damping of bilinear hysteretic SDOF system considering the influence of initial elastic damping. Soil Dynamics and Earthquake Engineering, 97, 74-85(2017) [27] CHEN, L. Q., LI, X., LU, Z. Q., ZHANG, Y. W., and DING, H. Dynamic effects of weights on vibration reduction by a nonlinear energy sink moving vertically. Journal of Sound and Vibration, 451, 99-119(2019) [28] CHEN, Y. Y., YAN, L. W., SZE, K., Y., and CHEN, S. H. Generalized hyperbolic perturbation method for homoclinic solutions of strongly nonlinear autonomous systems. Applied Mathematics and Mechanics (English Edition), 33(9), 1137-1152(2012) https://doi.org/10.1007/s10483-012-1611-6 [29] ZHANG, Y. W., LU, Y. N., ZHANG, W., TENG, Y. Y., YANG, H. X., YANG, T. Z., and CHEN, L. Q. Nonlinear energy sink with inerter. Mechanical Systems and Signal Processing, 125, 52-64(2019) [30] JIANG, W. N., ZHANG, G. C., and CHEN, L. Q. Forced response of quadratic nonlinear oscillator:comparison of various approaches. Applied Mathematics and Mechanics (English Edition), 36(11), 1403-1416(2015) https://doi.org/10.1007/s10483-015-1991-7 [31] XIONG, H., KONG, X. R., LI, H. Q., and YANG, Z. G. Vibration analysis of nonlinear systems with the bilinear hysteretic oscillator by using incremental harmonic balance method. Communications in Nonlinear Science and Numerical Simulation, 42, 437-450(2017) [32] WU, R. P., BAI, H. B., and LU, C. H. Simplified analysis of hysteresis dry friction vibration isolation system on flexible foundation (in Chinese). Journal of Mechanical Strength, 41, 44-48(2019) [33] WONG, C. W., NI, Y. Q., and LAU, S. L. Steady-state oscillation of hysteretic differential model, I:response analysis. Journal of Engineering Mechanics, 120, 2271-2298(1994) [34] YUAN, T. C., YANG, J., and CHEN, L. Q. A harmonic balance approach with alternating frequency/time domain progress for piezoelectric mechanical systems. Mechanical Systems and Signal Processing, 120, 274-289(2019) [35] ZHANG, Z. Y. and CHEN, Y. S. Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamic system with fractional exponential. Applied Mathematics and Mechanics (English Edition), 35(4), 423-436(2014) https://doi.org/10.1007/s10483-014-1802-9 [36] IKHOUANE, F., EURTADO, J. E., and RODELLAR, J. Variation of the hysteresis loop with the Bouc-Wen model parameters. Nonlinear Dynamics, 48, 361-380(2007) |