[1] HENRICI, P. Discrete Variable Methods in Ordinary Differential Equations, Wiley, New York (1962) [2] CESCHINO, F. and KUNTZMANN, J. Numerical Solution of Initial Value Problems, PrenticeHall, Englewood Cliffs, New Jersey (1966) [3] GEAR, C. W. Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey (1971) [4] STRANG, G. and FIX. G. J. An Analysis of the Finite Element Method, Prentice-Hall, New York (1973) [5] KELLER, H. B. Numerical Solution of Two Point Boundary Value Problems, Society for Industrial and Applied Mathematics, Philadelphia (1976) [6] FLETCHER, C. Computational Galerkin Methods, Springer-Verlag, New York (1984) [7] WILLIAM, J. L. Galerkin methods for two-point boundary value problems for first order systems. SIAM Journal on Numerical Analysis, 20, 161-171(1983) [8] DELFOUR, M., HAGER, W., and TROCHU, F. Discontinuous Galerkin methods for ordinary differential equations. Mathematics of Computation, 36, 455-473(1981) [9] HULME, B. L. One-step piecewise polynomial Galerkin methods for initial value problem. Mathematics of Computation, 26, 415-426(1972) [10] DOUGLAS, J. and DUPONT, T. Galerkin approximations for the two point boundary problems using continuous, piecewise polynomial spaces. Numerical Mathematics, 22, 99-109(1974) [11] DOUGLAS, J. and DUPONT, T. Galerkin methods for parabolic equations. SIAM Journal on Numerical Analysis, 7, 575-626(1970) [12] XIAO, C. Adaptive FEM Analysis for Systems of First Order ODEs Based on EEP Superconvergent Method (in Chinese), Ph. D. dissertation, Tsinghua University, Beijing (2009) [13] YUAN, S., XING, Q. Y., WANG, X., and YE, K. S. Self-adaptive strategy for one-dimensional finite element method based on EEP method with optimal super-convergence order. Applied Mathematics and Mechanics (English Edition), 29(5), 591-602(2008) https://doi.org/10.1007/s10483-008-0504-8 [14] YUAN, S., DU, Y., XING, Q. Y., and YE, K. S. Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method. Applied Mathematics and Mechanics (English Edition), 35(10), 1223-1232(2014) https://doi.org/10.1007/s10483-014-1869-9 |