[1] CHEN, P., LI, G. X., and ZHU, Z. Y. Development and application of SAW filter. Micromachines, 13(5), 656(2022) [2] MANDAL, D. and BANERJEE, S. Surface acoustic wave (SAW) sensors:physics, materials, and applications. Sensors, 22(3), 820(2022) [3] KAKIO, S., HAYASHI, K., KONDOH, E., and NAKAGAWA, Y. Behavior of surface acoustic wave resonators in supercritical CO2. Japanese Journal of Applied Physics, 50(7), 07HD08(2011) [4] BRÛlÉ, S., JAVELAUD, E. H., ENOCH, S., and GUENNEAU, S. Experiments on seismic metamaterials:molding surface waves. Physical Review Letters, 112(13), 133901(2014) [5] WANG, K., ZHOU, J. X., TAN, D. G., LI, Z. Y., LIN, Q. D., and XU, D. L. A brief review of metamaterials for opening low-frequency band gaps. Applied Mathematics and Mechanics (English Edition), 43(7), 1125-1144(2022) https://doi.org/10.1007/s10483-022-2870-9 [6] OUDICH, M., DJAFARI-ROUHANI, B., BONELLO, B., PENNEC, Y., HEMAIDIA, S., SARRY, F., and BEYSSEN, D. Rayleigh waves in phononic crystal made of multilayered pillars:confined modes, Fano resonances, and acoustically induced transparency. Physical Review Applied, 9(3), 034013(2018) [7] ZHANG, S. Y., WANG, Y. F., and WANG, Y. S. Evanescent surface acoustic waves in 1D viscoelastic phononic crystals. Journal of Applied Physics, 129(24), 245111(2021) [8] LIU, Y. F., HUANG, J. K., LI, Y. G., and SHI, Z. F. Trees as large-scale natural metamaterials for low-frequency vibration reduction. Construction and Building Materials, 199, 737-745(2019) [9] ZHAO, J. F., BONELLO, B., BECERRA, L., BOYKO, O., and MARCHAL, R. Focusing of Rayleigh waves with gradient-index phononic crystals. Applied Physics Letters, 108(22), 221905(2016) [10] MA, T. X., LI, Z. Y., ZHANG, C. Z., and WANG, Y. S. Energy harvesting of Rayleigh surface waves by a phononic crystal Luneburg lens. International Journal of Mechanical Sciences, 227, 107435(2022) [11] ASH, B. J., WORSFOLD, S. R., VUKUSIC, P., and NASH, G. R. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves. Nature Communications, 8(1), 174(2017) [12] WU, Q., CHEN, H., NASSAR, H., and HUANG, G. L. Non-reciprocal Rayleigh wave propagation in space-time modulated surface. Journal of the Mechanics and Physics of Solids, 146, 104196(2021) [13] PALERMO, A., CELLI, P., YOUSEFZADEH, B., DARAIO, C., and MARZANI, A. Surface wave non-reciprocity via time-modulated metamaterials. Journal of the Mechanics and Physics of Solids, 145, 104181(2020) [14] BLEUSTEIN, J. L. A new surface wave in piezoelectric materials. Applied Physics Letters, 13(12), 412-413(1968) [15] GULYAEV, Y. V. Electroacoustic surface waves in solids. Journal of Experimental and Theoretical Physics, 9, 37-38(1969) [16] HSU, J. C. and WU, T. T. Bleustein-Gulyaev-Shimizu surface acoustic waves in two-dimensional piezoelectric phononic crystals. IEEE Transactions on Sonics and Ultrasonics, 53(6), 1169-1176(2006) [17] ALAMI, M., EL BOUDOUTI, E. H., DJAFARI-ROUHANI, B., EL HASSOUANI, Y., and TALBI, A. Surface acoustic waves in one-dimensional piezoelectric-metallic phononic crystal:effect of a cap layer. Ultrasonics, 90, 80-97(2018) [18] NIE, G. Q., LIU, J. X., and LIU, X. L. Propagation behavior of two transverse surface waves in a three-layer piezoelectric/piezomagnetic structure. Waves in Random and Complex Media, 27(4), 637-663(2017) [19] XU, C. Y., PANG, Y., and FENG, W. J. Bragg reflection of Bleustein-Gulyaev (BG) waves in a magneto-electro-elastic substrate with a periodically inertial load surface. Mechanics of Materials, 162, 104037(2021) [20] GRIPP, J. A. B. and RADE, D. A. Vibration and noise control using shunted piezoelectric transducers:a review. Mechanical Systems and Signal Processing, 112, 359-383(2018) [21] WANG, Y. F., WANG, Y. Z., WU, B., CHEN, W. Q., and WANG, Y. S. Tunable and active phononic crystals and metamaterials. Applied Mechanics Reviews, 72(4), 040801(2020) [22] ZHOU, W. J., WU, B., CHEN, Z. Y., CHEN, W. Q., LIM, C. W., and REDDY, J. N. Actively controllable topological phase transition in homogeneous piezoelectric rod system. Journal of the Mechanics and Physics of Solids, 137, 103824(2020) [23] YI, J. L., WU, Z., XIA, R. Y., and LI, Z. Reconfigurable metamaterial for asymmetric and symmetric elastic wave absorption based on exceptional point in resonant bandgap. Applied Mathematics and Mechanics (English Edition), 44(1), 1-20(2023) https://doi.org/10.1007/s10483-023-2949-7 [24] BAO, B. and WANG, Q. Elastic wave manipulation in piezoelectric beam meta-structure using electronic negative capacitance dual-adjacent/staggered connections. Composite Structures, 210, 567-580(2019) [25] FLORES-PARRA, E., BERGAMINI, A., VAN DAMME, B., and ERMANNI, P. Controllable wave propagation of hybrid dispersive media with LC high-pass and band-pass networks. Applied Physics Letters, 110, 184103(2017) [26] JIANG, S., DAI, L. X., CHEN, H., HU, H. P., JIANG, W., and CHEN, X. D. Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap. Applied Mathematics and Mechanics (English Edition), 38(3), 411-422(2017) https://doi.org/10.1007/s10483-017-2171-7 [27] LI, X. P., CHEN, Y. Y., HU, G. K., and HUANG, G. L. A self-adaptive metamaterial beam with digitally controlled resonators for subwavelength broadband flexural wave attenuation. Smart Materials and Structures, 27, 045015(2018) [28] KHERRAZ, N., CHIKH-BLED, F. H., SAINIDOU, R., MORVAN, B., and REMBERT, P. Tunable phononic structures using Lamb waves in a piezoceramic plate. Physical Review B, 99(9), 094302(2019) [29] CHEN, Y. Y., HUANG, G. L., and SUN, C. T. Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting. Journal of Vibration and Acoustics, 136(6), 061008(2014) [30] XIA, R. Y., YI, J. L., CHEN, Z., and LI, Z. In situ steering of shear horizontal waves in a plate by a tunable electromechanical resonant elastic metasurface. Journal of Physics D:Applied Physics, 53(9), 095302(2020) [31] XIA, R. Y., SHAO, S. X., YI, J. L., ZHENG, K. H., NEGAHBAN, M., and LI, Z. Tunable asymmetric transmission of Lamb waves in piezoelectric bimorph plates by electric boundary design. Composite Structures, 300, 116111(2022) [32] SHAO, S. X., XIA, R. Y., and LI, Z. Tunable piezoelectric metasurface for manipulating multimode guided waves in plate. Engineering Structures, 270, 114917(2022) [33] ZHANG, Y. Q., XIA, R. Y., HUANG, K. F., and LI, Z. Theoretical analysis of guided waves propagation in periodic piezoelectric plates with shunting circuits. Frontiers in Physics, 10, 1094077(2022) [34] ALAN, S., ALLAM, A., and ERTURK, A. Programmable mode conversion and bandgap formation for surface acoustic waves using piezoelectric metamaterials. Applied Physics Letters, 115(9), 093502(2019) [35] STROH, A. N. Dislocations and cracks in anisotropic elasticity. The Philosophical Magazine:A Journal of Theoretical Experimental and Applied Physics, 3(30), 625-646(1958) [36] STROH, A. N. Steady state problems in anisotropic elasticity. Journal of Mathematics and Physics, 41(1-4), 77-103(1962) [37] TING, T. T. C. Anisotropic Elasticity:Theory and Applications, Oxford University Press, New York, 134-163(1996) [38] TANUMA, K. Stroh formalism and Rayleigh waves. Journal of Elasticity, 89, 5-154(2007) [39] BISWAS, S. Stroh analysis of Rayleigh waves in anisotropic thermoelastic medium. Journal of Thermal Stresses, 41(5), 627-644(2018) [40] MACKAY, T. G. and LAKHTAKIA, A. Multiple Rayleigh waves guided by the planar surface of a continuously twisted structurally chiral material. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 476(2239), 20200314(2020) [41] BARNETT, D. M. Boundary-polarized subsonic Rayleigh waves under conditions of semi-simple Stroh degeneracy. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 475(2231), 20190658(2019) [42] DARINSKII, A. N. and SHUVALOV, A. L. Surface acoustic waves on one-dimensional phononic crystals of general anisotropy:existence considerations. Physical Review B, 98(2), 024309(2018) [43] DARINSKII, A. N. and SHUVALOV, A. L. Surface acoustic waves in one-dimensional piezoelectric phononic crystals with symmetric unit cell. Physical Review B, 100(18), 184303(2019) [44] ZHAO, Y. C., ZHOU, X. M., and HUANG, G. L. Non-reciprocal Rayleigh waves in elastic gyroscopic medium. Journal of the Mechanics and Physics of Solids, 143, 104065(2020) [45] ELHADY, A. and ABDEL-RAHMAN, E. Measurement of the electric permittivity using Bleustein-Gulyaev wave sensor. Journal of Micromechanics and Microengineering, 32, 034004(2022) |