Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (12): 2407-2426.doi: https://doi.org/10.1007/s10483-025-3327-6
Peifeng LIN†(
), Tianyu ZANG, Jinming ZHANG
Received:2025-06-13
Revised:2025-10-01
Published:2025-11-28
Contact:
Peifeng LIN, E-mail: linpf@zstu.edu.cnSupported by:2010 MSC Number:
Peifeng LIN, Tianyu ZANG, Jinming ZHANG. A methodology of Lagrangian integral time scale in cavitating flow based on finite-time Lyapunov exponent. Applied Mathematics and Mechanics (English Edition), 2025, 46(12): 2407-2426.
Table 2
LITS results derived from different methods (unit: s)"
| Particle | Berlemont model | FTLE method | New model |
|---|---|---|---|
| 0.000 419 847 0 | 0.000 1 | 0.000 145 501 | |
| 0.000 076 674 7 | 0.000 1 | 0.000 111 179 | |
| 0.000 211 756 0 | 0.000 1 | 0.000 138 492 | |
| 0.000 088 440 3 | 0.000 2 | 0.000 185 086 | |
| 0.000 082 910 7 | 0.000 2 | 0.000 165 730 | |
| 0.000 111 309 0 | 0.000 1 | 0.000 131 161 |
| [1] | RICHARDSON, L. F. Atmospheric diffusion shown on a distance-neighbour graph. Proceedings of the Royal Society of London. Series A, 110(756), 709–737 (1926) |
| [2] | TAYLOR, G. I. Diffusion by continuous movements. Proceedings of the London Mathematical Society, s2-20(1), 196–212 (1922) |
| [3] | HINZE, J. O. Turbulence, McGraw-Hill, New York (1959) |
| [4] | HE, G., JIN, G., and ZHAO, X. Scale-similarity model for Lagrangian velocity correlations in isotropic and stationary turbulence. Physical Review E, 80(6), 66313 (2009) |
| [5] | KNORPS, M. and POZORSKI, J. Stochastic modeling for subgrid-scale particle dispersion in large-eddy simulation of inhomogeneous turbulence. Physics of Fluids, 33(4), 043323 (2021) |
| [6] | POPE, S. Lagrangian PDF methods for turbulent flows. Annual Review of Fluid Mechanics, 26(1), 23–63 (1994) |
| [7] | SAWFORD, B. Turbulent relative dispersion. Annual Review of Fluid Mechanics, 33(1), 289–317 (2001) |
| [8] | SWAATHI, P., DAS, S., and THYAGU, N. N. Inertial particle dynamics in traveling wave flow. arXiv, arXiv:2409.00484v1 (2024) |
| [9] | VERMA, A. and MAHESH, K. A Lagrangian subgrid-scale model with dynamic estimation of Lagrangian time scale for large eddy simulation of complex flows. Physics of Fluids, 24(8), 085101 (2012) |
| [10] | BERLEMONT, A., DESJONQUERES, P., and GOUESBET, G. Particle Lagrangian simulation in turbulent flows. International Journal of Multiphase Flow, 16(1), 19–34 (1990) |
| [11] | BURRY, D. and BERGELES, G. Dispersion of particles in anisotropic turbulent flows. International Journal of Multiphase Flow, 19(4), 651–664 (1993) |
| [12] | OESTERLÉ, B. and ZAICHIK, L. I. On Lagrangian time scales and particle dispersion modeling in equilibrium turbulent shear flows. Physics of Fluids, 16(9), 3374–3384 (2004) |
| [13] | CARLIER, J. P., KHALIJ, M., and OESTERLÉ, B. An improved model for anisotropic dispersion of small particles in turbulent shear flows. Aerosol Science and Technology, 39(3), 196–205 (2005) |
| [14] | DEGRAZIA, G., ANFOSSI, D., VELHO, H. F. D., and FERRERO, E. A Lagrangian decorrelation time scale in the convective boundary layer. Boundary-Layer Meteorology, 86(3), 525–534 (1998) |
| [15] | AHN, C. K. Generalized passivity-based chaos synchronization. Applied Mathematics and Mechanics (English Edition), 31(8), 1009–1018 (2010) https://doi.org/10.1007/s10483-010-1336-6 |
| [16] | ČOVIĆ, V., DJURIĆ, D., VESKOVIĆ, M., and OBRADOVIĆ, A. Lyapunov-Kozlov method for singular cases. Applied Mathematics and Mechanics (English Edition), 32(9), 1207–1220 (2011) https://doi.org/10.1007/s10483-011-1494-6 |
| [17] | DU, L., YANG, Y., and LEI, Y. M. Synchronization in a fractional-order dynamic network with uncertain parameters using an adaptive control strategy. Applied Mathematics and Mechanics (English Edition), 39(3), 353–364 (2018) https://doi.org/10.1007/s10483-018-2304-9 |
| [18] | FILIPOVIC, V. Global exponential stability of switched systems. Applied Mathematics and Mechanics (English Edition), 32(9), 1197–1206 (2011) https://doi.org/10.1007/s10483-011-1493-7 |
| [19] | WANG, X. H. and HUANG, N. J. Finite-time consensus of multi-agent systems driven by hyperbolic partial differential equations via boundary control. Applied Mathematics and Mechanics (English Edition), 42(12), 1799–1816 (2021) https://doi.org/10.1007/s10483-021-2789-6 |
| [20] | HALLER, G. and YUAN, G. Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D: Nonlinear Phenomena, 147(3-4), 352–370 (2000) |
| [21] | HO, R. D. J. G., CLARK, D., and BERERA, A. Chaotic measures as an alternative to spectral measures for analysing turbulent flow. Atmosphere, 15(9), 1053 (2024) |
| [22] | BOFFETTA, G., DAVOUDI, J., ECKHARDT, B., and SCHUMACHER, J. Lagrangian tracers on a surface flow: the role of time correlations. Physical Review Letters, 93(13), 134501 (2004) |
| [23] | DE DIVITIIS, N. Self-similarity in fully developed homogeneous isotropic turbulence using the Lyapunov analysis. Theoretical and Computational Fluid Dynamics, 26(1-4), 81–92 (2012) |
| [24] | BRENNEN, C. E. Cavitation and Bubble Dynamics, Oxford University Press, New York (1995) |
| [25] | DELALE, C. F. and PASINLIOĞLU, Ş. On the gas pressure inside cavitation bubbles. Physics of Fluids, 35(2), 023330 (2023) |
| [26] | SU, C. K., CAMARA, C., KAPPUS, B., and PUTTERMAN, S. J. Cavitation luminescence in a water hammer: upscaling sonoluminescence. Physics of Fluids, 15(6), 1457–1461 (2003) |
| [27] | WEI, A. B., YU, L. Y., QIU, L. M., and ZHANG, X. B. Cavitation in cryogenic fluids: a critical research review. Physics of Fluids, 34(10), 101303 (2022) |
| [28] | ZARESHARIF, M., RAVELET, F., KINAHAN, D. J., and DELAURE, Y. M. C. Cavitation control using passive flow control techniques. Physics of Fluids, 33(12), 121301 (2021) |
| [29] | WANG, G. Y., SENOCAK, I., SHYY, W., IKOHAGI, T., and CAO, S. L. Dynamics of attached turbulent cavitating flows. Progress in Aerospace Sciences, 37(6), 551–581 (2001) |
| [1] | M. M. BASKO. Numerical method for simulating rarefaction shocks in the approximation of phase-flip hydrodynamics [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(6): 871-884. |
| [2] | Xuelan ZHANG, Mingyao LUO, Peilai TAN, Liancun ZHENG, Chang SHU. Magnetic nanoparticle drug targeting to patient-specific atherosclerosis: effects of magnetic field intensity and configuration [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(2): 349-360. |
| [3] | Qiang LI, Yu GU, Huatao WANG. The influence of temperature on flow-induced forces on quartzcrystal-microbalance sensors in a Chinese liquor identification electronic-nose: three-dimensional computational fluid dynamics simulation and analysis [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(9): 1301-1312. |
| [4] | Zhenyu ZHANG, Ning ZHAO, Wei ZHONG, Long WANG, Bofeng XU. Progresses in application of computational fluid dynamic methods to large scale wind turbine aerodynamics [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(S1): 21-30. |
| [5] | WANG Yi. Essential consistency of pressure Poisson equation method and projection method on staggered grids [J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(6): 789-794. |
| [6] | DU Gang;SUN Mao. Effects of unsteady deformation of flapping wing on its aerodynamic forces [J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(6): 731-743 . |
| [7] | TANG You-gang;GU Jia-yang;ZUO Jian-li;MIN Jian-qin. NONLINEAR DYNAMICS RESPONSE OF CASING PIPE UNDER COMBINED WAVE-CURRENT [J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(8): 1040-1046 . |
| [8] | Liu Xi-yun . SOLUTION TO THE FORM OF POlSSON EQUATION BY THE BOUNDARY ELEMENT METHODS [J]. Applied Mathematics and Mechanics (English Edition), 1994, 15(3): 229-234. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

Email Alert
RSS