Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (5): 869-884.doi: https://doi.org/10.1007/s10483-025-3250-9
Previous Articles Next Articles
Peiliang ZHANG, Jianfei WANG†()
Received:
2024-10-15
Revised:
2025-03-10
Published:
2025-05-07
Contact:
Jianfei WANG, E-mail: jf.wang@bjut.edu.cnSupported by:
2010 MSC Number:
Peiliang ZHANG, Jianfei WANG. Macro fiber composite-based active control of nonlinear forced vibration of functionally graded plate. Applied Mathematics and Mechanics (English Edition), 2025, 46(5): 869-884.
Table 1
Dimensionless linear and nonlinear fundamental frequencies of a fully clamped (CCCC) FGM plate with surface-bonded piezoelectric layers"
Present | Ref. [ | Ref. [ | Present | Ref. [ | Ref. [ | Present | Ref. [ | Ref. [ | Present | Ref. [ | Ref. [ | |
0 | 21.01 | 20.73 | 20.74 | 21.25 | 21.00 | 21.02 | 21.99 | 21.76 | 21.84 | 23.21 | 22.97 | 23.14 |
0.2 | 16.77 | 17.24 | 17.21 | 17.03 | 17.46 | 17.44 | 17.95 | 18.11 | 18.13 | 18.90 | 19.13 | 19.21 |
1 | 12.87 | 13.10 | 13.10 | 13.16 | 13.26 | 13.28 | 13.62 | 13.77 | 13.79 | 14.39 | 14.50 | 14.61 |
5 | 10.57 | 10.74 | 10.78 | 10.80 | 10.86 | 10.92 | 11.06 | 11.25 | 11.34 | 11.72 | 11.86 | 11.99 |
9.65 | 9.55 | 9.55 | 9.75 | 9.67 | 9.68 | 9.84 | 10.01 | 10.06 | 10.36 | 10.57 | 10.65 |
Table 2
Material and geometrical parameters of the FG-CNTRC plate with MFC actuators and sensors"
Parameter | Value | Parameter | Value |
---|---|---|---|
Longitudinal Young's modulus of MFC | 30.336 | Poisson's ratio of PMMA/GPa | 0.34 |
Transverse Young's modulus of MFC | 15.857 | Density of PMMA/ | 1 150 |
Shear modulus of MFC | 5.515 | Length of FG-CNTRC | 210 |
Poisson's ratio of MFC | 0.31 | Width of FG-CNTRC | 300 |
Density of MFC | 7 700 | Thickness of FG-CNTRC | 5 |
Dielectric constant of MFC | 12% CNT volume fraction efficiency parameter | 0.137 | |
Piezoelectric strain constant of MFC | 12% CNT volume fraction efficiency parameter | 1.022 | |
Length of MFC | 85 | 17% CNT volume fraction efficiency parameter | 0.142 |
Width of MFC | 57 | 17% CNT volume fraction efficiency parameter | 1.626 |
Thickness of MFC | 0.3 | 28% CNT volume fraction efficiency parameter | 0.141 |
Young's modulus of PMMA/GPa | 3.52 | 28% CNT volume fraction efficiency parameter | 1.585 |
[1] | WANG, J. F. and LIEW, K. M.On the study of elastic properties of CNT-reinforced composites based on element-free MLS method with nanoscale cylindrical representative volume element. Composite Structures, 124, 1–9 (2015) |
[2] | LI, X. L. and WANG, J. F.Effects of layer number and initial pressure on continuum-based buckling analysis of multi-walled carbon nanotubes. Applied Mathematics and Mechanics (English Edition), 43(12), 1857–1872 (2022) https://doi.org/10.1007/s10483-022-2909-6 |
[3] | WANG, J. F., LI, P. H., TIAN, X. B., SHI, S. Q., and TAM, L. H.Molecular investigation on temperature-dependent mechanical properties of PMMA/CNT nanocomposite. Engineering Fracture Mechanics, 293, 109705 (2023) |
[4] | WANG, J., CHANG, Z., LIU, T., and CHEN, L.A review of linear and nonlinear vibration analysis of composite laminated structures by computational approaches: 2015–2024. Nonlinear Dynamics, 113(10), 10839–10859 (2025) |
[5] | WANG, J. F., CAO, S. H., and ZHANG, W.Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate. European Journal of Mechanics-A/Solids, 85, 104105 (2021) |
[6] | WANG, J. F., YANG, J. P., TAM, L. H., and ZHANG, W.Effect of CNT volume fractions on nonlinear vibrations of PMMA/CNT composite plates: a multiscale simulation. Thin-Walled Structures, 170, 108513 (2022) |
[7] | ZHANG, W., HE, L. J., and WANG, J. F.Content-dependent nonlinear vibration of composite plates reinforced with carbon nanotubes. Journal of Vibration Engineering and Technologies, 10(4), 1253–1264 (2022) |
[8] | ZGHAL, S., FRIKHA, A., and DAMMAK, F.Large deflection response-based geometrical nonlinearity of nanocomposite structures reinforced with carbon nanotubes. Applied Mathematics and Mechanics (English Edition), 41(8), 1227–1250 (2020) https://doi.org/10.1007/s10483-020-2633-9 |
[9] | ZHAO, Y. F., ZHANG, S. Q., WANG, X., MA, S. Y., ZHAO, G. Z., and KANG, Z.Nonlinear analysis of carbon nanotube reinforced functionally graded plates with magneto-electro-elastic multiphase matrix. Composite Structures, 297, 115969 (2022) |
[10] | PHAM, Q. H., TRAN, T. T., and NGUYEN, P. C.Nonlinear dynamic analysis of functionally graded carbon nanotube-reinforced composite plates using MISQ20 element. Frontiers of Structural and Civil Engineering, 17, 1072–1085 (2023) |
[11] | ZHU, F., FENG, C., WANG, Y., QIAN, Q., HANG, Z., YANG, J., and WANG, S.Damped nonlinear dynamics of FG-GPLRC dielectric beam with active tuning using DQ and IHB methods. International Journal of Structural Stability and Dynamics, 23, 2350079 (2023) |
[12] | QIAN, Q., ZHU, F., FAN, Y., HANG, Z., FENG, C., and YANG, J.Parametric study on nonlinear vibration of FG-GNPRC dielectric beam with Kelvin-Voigt damping. Thin-Walled Structures, 185, 110617 (2023) |
[13] | NI, Z., FAN, Y., HANG, Z., YANG, J., WANG, Y., and FENG, C.Numerical investigation on nonlinear vibration of FG-GNPRC dielectric membrane with internal pores. Engineering Structures, 284, 115928 (2023) |
[14] | ZHANG, Y., GUO, X., WU, Y., ZHANG, Y., ZHANG, H., and LÜ, C.Vibration control of membrane structures by piezoelectric actuators considering piezoelectric nonlinearity under strong electric fields. Engineering Structures, 315, 118413 (2024) |
[15] | CHAI, Z. Y., HAN, J. T., SONG, X. Y., ZANG, J., ZHANG, Y. W., and ZHANG, Z.Theoretical and experimental investigations on an X-shaped vibration isolator with active controlled variable stiffness. Applied Mathematics and Mechanics (English Edition), 45(8), 1371–1386 (2024) https://doi.org/10.1007/s10483-024-3135-6 |
[16] | YU, X. L., ZHANG, X. H., and WANG, J. F.Active vibration control of functionally graded carbon nanotube reinforced composite plate with coupled electromechanical actuation. Frontiers in Materials, 9, 861388 (2022) |
[17] | ZHOU, X., WU, S., WANG, X., WANG, Z., ZHU, Q., SUN, J., HUANG, P., WANG, X., HUANG, W., and LU, Q.Review on piezoelectric actuators: materials, classifications, applications, and recent trends. Frontiers of Mechanical Engineering, 19, 6 (2024) |
[18] | SHIRDELAN, F., MOHAMMADIMEHR, M., and BARGOZINI, F.Control and vibration analyses of a sandwich doubly curved micro-composite shell with honeycomb, truss, and corrugated cores based on the fourth-order shear deformation theory. Applied Mathematics and Mechanics (English Edition), 45(10), 1773–1790 (2024) https://doi.org/10.1007/s10483-024-3175-6 |
[19] | ZHANG, Y., GUO, X., WU, Y., ZHANG, Y., ZHANG, H., and LÜ, C.Nonlinear thermo-electro-mechanical responses and active control of functionally graded piezoelectric plates subjected to strong electric fields. Thin-Walled Structures, 205, 112375 (2024) |
[20] | SUN, Y., SONG, Z., and LI, F.Theoretical and experimental studies of an effective active vibration control method based on the deflection shape theory and optimal algorithm. Mechanical Systems and Signal Processing, 170, 108650 (2022) |
[21] | ZHANG, S. Q., GAO, Y. S., ZHAO, G. Z., YU, Y. J., CHEN, M., and WANG, X. F.Geometrically nonlinear analysis of CNT-reinforced functionally graded composite plates integrated with piezoelectric layers. Composite Structures, 234, 111694 (2020) |
[22] | LIU, T., LI, C., WANG, C., HU, W., and BUI, T. Q.Geometrically nonlinear isogeometric analysis of smart piezoelectric FG plates considering thermal effects of piezoelectric stress and dielectric constants. Composite Structures, 266, 113795 (2021) |
[23] | SHARGHI, H. and BILGEN, O.Continuous electric field modeling of macro-fiber composites for actuation and energy harvesting. International Journal of Mechanical Sciences, 213, 106864 (2022) |
[24] | LU, Q., LIU, C., and WANG, P.Band gap enhancement and vibration reduction of functionally graded sandwich metastructure beam. Composite Structures, 292, 115650 (2022) |
[25] | ZIPPO, A., FERRARI, G., AMABILI, M., BARBIERI, M., and PELLICANO, F.Active vibration control of a composite sandwich plate. Composite Structures, 128, 100–114 (2015) |
[26] | LU, Q., WANG, P., and LIU, C.An analytical and experimental study on adaptive active vibration control of sandwich beam. International Journal of Mechanical Sciences, 232, 107634 (2022) |
[27] | ZHOU, J. J., ZHOU, J., CHEN, W., TIAN, J., SHEN, J., and ZHANG, P. C.Macro fiber composite-based active and efficient suppression of low-frequency vibration of thin-walled composite beam. Composite Structures, 299, 116019 (2022) |
[28] | ZHANG, H., SUN, W., LUO, H., and ZHANG, R.Modeling and active control of geometrically nonlinear vibration of composite laminates with macro fiber composite. Composite Structures, 321, 117292 (2023) |
[29] | ZHANG, S. Q., LI, Y. X., and SCHMIDT, R.Modeling and simulation of macro-fiber composite layered smart structures. Composite Structures, 126, 89–100 (2015) |
[30] | WANG, J. F., YANG, J. P., TAM, L. H., and ZHANG, W.Molecular dynamics-based multiscale nonlinear vibrations of PMMA/CNT composite plates. Mechanical Systems and Signal Processing, 153, 107530 (2021) |
[31] | ZHAO, L. C., XU, L., and ZENG, H. T.Thermal buckling of temperature-dependent FG-CNT reinforced composite conical-conical joined shell using GDQ. Thin-Walled Structures, 205, 112320 (2024) |
[32] | WANG, J. F., SHI, S. Q., YANG, J. P., and ZHANG, W.Multiscale analysis on free vibration of functionally graded graphene reinforced PMMA composite plates. Applied Mathematical Modelling, 98, 38–58 (2021) |
[33] | WANG, J. F., SHI, S. Q., LIU, Y. Z., YANG, J. P., and TAM, L. H.Multiscale simulation of temperature- and pressure-dependent nonlinear dynamics of PMMA/CNT composite plates. Nonlinear Dynamics, 109, 1517–1550 (2022) |
[34] | WANG, J. F., CAO, G., SONG, Z. W., and LAI, S. K.Dynamic analysis of FGM plates with variable delamination parameters by the Chebyshev-Ritz method. International Journal of Structural Stability and Dynamics, 23, 2340013 (2023) |
[35] | WANG, J. F., CHANG, Z. L., CAO, G., and LAI, S. K.Predicting delamination in composite laminates through semi-analytical dynamic analysis and vibration-based quantitative assessment. Thin-Walled Structures, 204, 112346 (2024) |
[36] | WANG, J. F., YANG, J. P., LAI, S. K., and ZHANG, W.Stochastic meshless method for nonlinear vibration analysis of composite plate reinforced with carbon fibers. Aerospace Science and Technology, 105, 105919 (2020) |
[37] | WANG, J. F., LI, X. L., SHI, S. Q., and GUO, X. Y.Multiscale nonlinear dynamics analysis of defective graphene reinforced PMMA composite plates under aerodynamic pressure. Nonlinear Dynamics, 111, 11851–11884 (2023) |
[38] | LOPATIN, A. V. and MOROZOV, E. V.Fundamental frequency and design of the CFCF composite sandwich plate. Composite Structures, 93, 983–991 (2011) |
[39] | ZHANG, P. L., LI, X. L., and WANG, J. F.Nonlinear effect on stable state and snap-through bistability of square composite laminate. European Journal of Mechanics-A/Solids, 109, 105431 (2025) |
[40] | FAKHARI, V., OHADI, A., and YOUSEFIAN, P.Nonlinear free and forced vibration behavior of functionally graded plate with piezoelectric layers in thermal environment. Composite Structures, 93, 2310–2321 (2011) |
[1] | Yuxin HAO, Lei SUN, Wei ZHANG, Han LI. Active traveling wave vibration control of elastic supported conical shells with smart micro fiber composites based on the differential quadrature method [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 305-322. |
[2] | Jie CHEN, Xinyue ZHANG, Mingyang FAN. Dynamic behaviors of graphene platelets-reinforced metal foam piezoelectric beams with velocity feedback control [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 63-80. |
[3] | Yong YANG, S. SAHMANI, B. SAFAEI. Couple stress-based nonlinear primary resonant dynamics of FGM composite truncated conical microshells integrated with magnetostrictive layers [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(2): 209-222. |
[4] | Fengming LI;Zhiguang SONG. Vibration analysis and active control of nearly periodic two-span beams with piezoelectric actuator/sensor pairs [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(3): 279-292. |
[5] | LI Ying-hui;GAO Qing;YIN Xue-gang. NONLINEAR DYNAMIC RESPONSE AND ACTIVE VIBRATION CONTROL OF THE VISCOELASTIC CABLE WITH SMALL SAG [J]. Applied Mathematics and Mechanics (English Edition), 2003, 24(5): 596-604. |
[6] | HUANG Hu;ZHOU Xi-reng . ON THE RESONANT GENERATION OF WEAKLY NONLINEAR STOKES WAVES IN REGIONS WITH FAST VARYING TOPOGRAPHY AND FREE SURFACE CURRENT [J]. Applied Mathematics and Mechanics (English Edition), 2001, 22(6): 730-740. |
[7] | Wang Zhongdong;Chen Suhuan;Yang Xiaodong . ACTIVE VIBRATION CONTROL AND SUPPRESSION FOR INTEGRATED STRUCTURES [J]. Applied Mathematics and Mechanics (English Edition), 1999, 19(2): 171-178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||