[1] Wu Ya,Yang Shuzi.Application of several timeseries m odels in prediction[A].Applied Time Series Analysis[M].Beijing:World Scientific Publishing,1989. [2] Chen C H.Applied Tim eseries Analysis[M].Beijing:World Scientific Publishing Cor,1989. [3] Yang Shuzi,Wu Ya.Applied Timeseries Analysis in Engineering[M].Beijing:World Scientific Publishing Cor,1992. [4] Ma Junhai,Chen Yushu,Liu Zengrong.The thresho ld value for diagnosis of chaotic nature of the data obtained i nonlinear dynamic analysis[J].Applied Mathematics and Mechanics(English Ed),1998,19(6):513~520. [5] Nerenberg M A H.Correlation dimension and systematic geometric effects[J].Phys Rev A,1990,42(6):7065~7674. [6] Alan Wolf,et al.Determining Lyapunov exponent from a timeseries[J].Phys D,1985,16(9):285~317. [7] M ess A I,et al.Singular-value decomposition and embedding dimension[J].Phys Rev A,1987,36(1):340~347. [8] Ma Junhai.The Non-Linear Dynamic System Reconstruction of the Chaotic Timeseries,A Thesis for Degree of Engineering[D].Tianjin:Tianjin University,1997,5.(in Chinese) [9] Zhang Qinghua.Wavelet networks[J].IEE Transections on Neural Networks,1992,6(11):889~898. [10] Liang Yuecao.Predicting chaotic timeseries with wavelet netw orks[J].Phys.D,1995,85(8):225~238. [11] Dean Prichard.Generating surrogate date for time series with several simultaneously measured variables[J].Phys Rev Lett,1994,191(7):230~245. [12] Davies M E.Reconstructing attractions from filtered time series[J].Phys D,1997,101:195~206. [13] Alexet Potapov.Distortions of reconstruction for chaotic attractors[J].Phys D,1997,101(5):207~226. |