[1] Yang, Y. and Lim, C. W. A new nonlocal cylindrical shell model for axisymmetric wave propaga-tion in carbon nanotubes. Advanced Science Letters, 4(1), 121-131 (2011)
[2] Zhao, X., Ng, T. Y., and Liew, K. M. Free vibration of two-side simply-supported laminatedcylindrical panels via the mesh-free kp-Ritz method. International Journal of Mechanical Sciences,46(1), 123-142 (2004)
[3] Zhou, D., Lo, S. H., and Cheung, Y. K. 3-D vibration analysis of annular sector plates using theChebyshev-Ritz method. Journal of Sound and Vibration, 320(1-2), 421-437 (2009)
[4] Liu, Y., Hon, Y. C., and Liew, K. M. A meshfree Hermite-type radial point interpolation methodfor Kirchhoff plate problems. International Journal for Numerical Methods in Engineering, 66(7),1153-1178 (2006)
[5] Kurpa, L., Pilgun, G., and Amabili, M. Nonlinear vibrations of shallow shells with complexboundary: R-functions method and experiments. Journal of Sound and Vibration, 306(3-5), 580-600 (2007)
[6] Qian, L. F., Batra, R. C., and Chen, L. M. Static and dynamic deformations of thick functionallygraded elastic plates by using higher-order shear and normal deformable plate theory and meshlesslocal Petrov-Galerkin method. Composites Part B: Engineering, 35(6-8), 685-697 (2004)
[7] Sladek, J., Sladek, V., Wen, P. H., and Aliabadi, M. H. Meshless local Petrov-Galerkin (MLPG)method for shear deformable shells analysis. Chinese Journal of Mechanical Engineering, 13(2),103-117 (2006)
[8] Krys’ko, V. A., Papkova, I. V., and Soldatov, V. V. Analysis of nonlinear chaotic vibrations ofshallow shells of revolution by using the wavelet transform. Mechanics of Solids, 45(1), 85-93(2010)
[9] Li, S. Q. and Hong, Y. Quasi-Green’s function method for free vibration of simply-supportedtrapezoidal shallow spherical shell. Applied Mathematics and Mechanics (English Edition), 31(5),635-642 (2010) DOI 10.1007/s10483-010-0511-7
[10] Michaels, J. E. and Pao, Y. H. The inverse source problem for an oblique force on an elastic plate.Journal of the Acoustical Society of America, 77(6), 2005-2011 (1985)
[11] Li, S. M., Miara, B., and Yamamoto, M. A Carleman estimate for the linear shallow shell equationand an inverse source problem. Discrete and Continuous Dynamical Systems, 23(1-2), 367-380(2009)
[12] Alves, C., Silvestre, A. L., and Takahashi, T. Solving inverse source problems using observabilityapplications to the Euler-Bernoulli plate equation. SIAM Journal on Control and Optimization,48(3), 1632-1659 (2009)
[13] Wang, Y. H. Global uniqueness and stability for an inverse plate problem. Journal of OptimizationTheory and Applications, 132(1), 161-173 (2007)
[14] Yang, C. Y. The determination of two heat sources in an inverse heat conduction problem. InternationalJournal of Heat and Mass Transfer, 42(2), 345-356 (1999)
[15] Yang, C. Y. Solving the two-dimensional inverse heat source problem through the linear least-squares error method. International Journal of Heat and Mass Transfer, 41(2), 393-398 (1998)
[16] Fatullayev, A. G. Numerical solution of the inverse problem of determining an unknown sourceterm in a heat equation. Mathematical and Computers in Simulation, 58(3), 247-253 (2002)
[17] Le, N. C. and Lefevre, F. A parameter estimation approach to solve the inverse problem of pointheat sources identification. International Journal of Heat and Mass Transfer, 47(4), 827-841(2004)
[18] Johansson, B. T. and Lesnic, D. A variational method for identifying a spacewise-dependent heatsource. IMA Journal of Applied Mathematics, 72(6), 748-760 (2007)
[19] Yan, L., Fu, C. L., and Yang, F. L. The method of fundamental solutions for the inverse heatsource problem. Engineering Analysis with Boundary Elements, 32(3), 216-222 (2008)
[20] Jin, B. T. and Marin, L. The method of fundamental solutions for inverse source problems as-sociated with the steady-state heat conduction. International Journal for Numerical Method inEngineering, 69(8), 1570-1589 (2007)
[21] Yan, L., Yang, F. L., and Fu, C. L. A meshless method for solving an inverse spacewise-dependentheat source problem. Journal of Computational Physics, 228(1), 123-136 (2009)
[22] Johansson, B. T., Lesnic, D., and Reeve, T. A method of fundamental solutions for the one-dimensional inverse Stefan problem. Applied Mathematical Modelling, 35(9), 4367-4378 (2011)
[23] Chen, C. W., Young, D. L., and Tsai, C. C. The method of fundamental solutions for inverse 2DStokes problems. Computational Mechanics, 37(1), 2-14 (2005)
[24] Marin, L. and Lesnic, D. The method of fundamental solutions for inverse boundary value problemsassociated with the two-dimensional biharmonic equation. Mathematical and Computer Modelling,42(3-4), 261-278 (2005)
[25] Alves, C. J. S., Colaco, M. J., Leitao, V. M. A., Martins, N. F. M., Orlande, H. R. B., and Roberty,N. C. Recovering the source term in a linear diffusion problem by the method of fundamentalsolutions. Inverse Problems in Science and Engineering, 16(8), 1005-1021 (2008)
[26] Love, A. E. H. On the small free vibrations and deformations of elastic shells. PhilosophicalTransactions of the Royal Society, Series A, 17, 491-549 (1888)
[27] Alves, C. J. S. On the choice of source points in the method of fundamental solutions. EngineeringAnalysis with Boundary Elements, 33(12), 1348-1361 (2009)
[28] Kim, S. M. and McCullough, B. F. Dynamic response of plate on viscous Winkler foundation tomoving loads of varying amplitude. Engineering Structure, 25(9), 1179-1188 (2003)
[29] Liew, K. M., Han, J. B., and Xiao, Z. M. Differential quadrature method for Mindlin plates onWinkler foundations. International Journal of Mechanical Sciences, 38(4), 405-421 (1996) |