[1] Eringen, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54(9), 4703-4710(1983)
[2] Eringen, A. C. Nonlocal Continuum Field Theories, Springer, New York (2002)
[3] Mindlin, R. D. and Tiersten, H. F. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis, 11(1), 415-448(1962)
[4] Koiter, W. T. Couple stresses in the theory of elasticity. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen (B), 67(1), 17-44(1964)
[5] Yang, F., Chong, A. C. M., Lam, D. C. C., and Tong, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39(10), 2731-2743(2002)
[6] Mindlin, R. D. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 6(1), 51-78(1964)
[7] Mindlin, R. D. Second gradient of strain and surface tension in linear elasticity. International Journal of Solids and Structures, 1(4), 417-438(1965)
[8] Lam, D. C. C., Yang, F., Chong, A. C. M., Wang, J., and Tong, P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51(8), 1477-1508(2003)
[9] Eringen, A. C. and Suhubi, E. Nonlinear theory of simple micro-elastic solids-I. International Journal of Engineering Science, 2(2), 189-203(1964)
[10] Suhubi, E. and Eringen, A. C. Nonlinear theory of micro-elastic solids-Ⅱ. International Journal of Engineering Science, 2(4), 389-404(1964)
[11] Ansari, R., Arash, B., and Rouhi, H. Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity. Composite Structures, 93(9), 2419-2429(2011)
[12] Peddieson, J., Buchanan, G. R., and McNitt, R. P. Application of nonlocal continuum models to nanotechnology. International Journal of Engineering Science, 41(3-5), 305-312(2003)
[13] Sudak, L. J. Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. Journal of Applied Physics, 94(11), 7281-7287(2003)
[14] Rouhi, H. and Ansari, R. Nonlocal analytical flugge shell model for axial buckling of double-walled carbon nanotubes with different end conditions. Nano, 7, 1250018(2012)
[15] Ansari, R. and Rouhi, H. Analytical treatment of the free vibration of single-walled carbon nanotubes based on the nonlocal flugge shell theory. Journal of Engineering Materials and Technology, 134(1), 011008(2012)
[16] Chang, T. P. Thermal-mechanical vibration and instability of a fluid-conveying single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Applied Mathematical Modelling, 36(5), 1964-1973(2012)
[17] Wang, K. F., Wang, B. L., and Kitamura, T. A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mechanica Sinica, 32(1), 83-100(2016)
[18] Ansari, R., Gholami, R., and Rouhi, H. Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory. Composite Structures, 126, 216-226(2015)
[19] Ansari, R., Rouhi, H., and Sahmani, S. Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. International Journal of Mechanical Sciences, 53(9), 786-792(2011)
[20] Ansari, R. and Rouhi, H. Explicit analytical expressions for the critical buckling stresses in a monolayer graphene sheet based on nonlocal elasticity. Solid State Communications, 152(2), 56-59(2012)
[21] Gibbs, J. W. The Scientific Papers of J. Willard Gibbs, Vol. 1, Longmans-Green, London (1906)
[22] Cammarata, R. C. Surface and interface stress effects on interfacial and nanostructured materials. Materials Science and Engineering, A237(2), 180-184(1997)
[23] Gurtin, M. E. and Murdoch, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291-323(1975)
[24] Gurtin, M. E. and Murdoch, A. I. Surface stress in solids. International Journal of Solids and Structures, 14(6), 431-440(1978)
[25] Arefi, M. Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage. Applied Mathematicsand Mechanics (English Edition), 37(3), 289-302(2016) DOI 10.1007/s10483-016-2039-6
[26] Ansari, R. and Sahmani, S. Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. International Journal of Engineering Science, 49(11), 1244-1255(2011)
[27] Eltaher, M. A., Mahmoud, F. F., Assie, A. E., and Meletis, E. I. Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Applied Mathematics and Computation, 224, 760-774(2013)
[28] Ansari, R., Mohammadi, V., Faghih-Shojaei, M., Gholami, R., and Sahmani, S. Postbuckling characteristics of nanobeams based on the surface elasticity theory. Composites Part B:Engineering, 55, 240-246(2013)
[29] Hossieni-Hashemi, S. and Nazemnezhad, R. An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Composites Part B:Engineering, 52, 199-206(2013)
[30] Ansari, R., Mohammadi, V., Faghih-Shojaei, M., Gholami, R., and Rouhi, H. Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory. European Journal of Mechanics-A/Solids, 45, 143-152(2014)
[31] Amirian, B., Hosseini-Ara, R., and Moosavi, H. Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model. Applied Mathematics and Mechanics (English Edition), 35(7), 875-886(2014) DOI 10.1007/s10483-014-1835-9
[32] Ansari, R., Mohammadi, V., Faghih-Shojaei, M., Gholami, R., and Sahmani, S. Postbuckling analysis of Timoshenko nanobeams including surface stress effect. International Journal of Engineering Science, 75, 1-10(2014)
[33] Ansari, R., Mohammadi, V., Faghih-Shojaei, M., Gholami, R., and Sahmani, S. On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory. Composites Part B:Engineering, 60, 158-166(2014)
[34] Chen, X. and Meguid, S. A. Asymmetric bifurcation of initially curved nanobeam. Journal of Applied Mechanics, 82, 091003(2015)
[35] Ansari, R., Gholami, R., Norouzzadeh, A., and Darabi, M. A. Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model. Acta Mechanica Sinica, 31(5), 708-719(2015)
[36] Wang, K. F. and Wang, B. L. A general model for nano-cantilever switches with consideration of surface effects and nonlinear curvature. Physica E, 66, 197-208(2015)
[37] Ansari, R., Pourashraf, T., and Gholami, R. An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin-Walled Structures, 93, 169-176(2015)
[38] Lu, Z., Xie, F., Liu, Q., and Yang, Z. Surface effects on mechanical behavior of elastic nanoporous materials under high strain. Applied Mathematics and Mechanics (English Edition), 36(7), 927-938(2015) DOI 10.1007/s10483-015-1958-9
[39] Duan, J., Li, Z., and Liu, J. Pull-in instability analyses for NEMS actuators with quartic shape approximation. Applied Mathematics and Mechanics (English Edition), 37(3), 303-314(2016) DOI 10.1007/s10483-015-2007-6
[40] He, L. H., Lim, C. W., and Wu, B. S. A continuum model for size-dependent deformation of elastic film of nano-scale thickness. International Journal of Solids and Structures, 41(3), 847-857(2004)
[41] Ansari, R. and Sahmani, S. Surface stress effects on the free vibration behavior of nanoplates. International Journal of Engineering Science, 49(11), 1204-1215(2011)
[42] Lu, P., He, L. H., Lee, H. P., and Lu, C. Thin plate theory including surface effects. International Journal of Solids and Structure, 43(16), 4631-4647(2006)
[43] Ansari, R., Gholami, R., Faghih-Shojaei, M., Mohammadi, V., and Darabi, M. A. Surface stress effect on the pull-in instability of hydrostatically and electrostatically actuated rectangular nanoplates with various edge supports. Journal of Engineering Materials and Technology, 134(4), 041013(2012)
[44] Huang, D. W. Size-dependent response of ultra-thin films with surface effects. International Journal of Solids and Structures, 45(2), 568-579(2008)
[45] Ansari, R., Gholami, R., Faghih-Shojaei, M., Mohammadi, V., and Sahmani, S. Surface stress effect on the vibrational response of circular nanoplates with various edge supports. Journal of Applied Mechanics, 80(2), 021021(2013)
[46] Narendar, S. and Gopalakrishnan, S. Study of Terahertz wave propagation properties in nanoplates with surface and small-scale effects. International Journal of Mechanical Sciences, 64(1), 221-231(2012)
[47] Ansari, R., Mohammadi, V., Faghih-Shojaei, M., Gholami, R., and Sahmani, S. Surface stress effect on the postbuckling and free vibrations of axisymmetric circular Mindlin nanoplates subject to various edge supports. Composite Structures, 112, 358-367(2014)
[48] Shaat, M., Mahmoud, F. F., Gao, X. L., and Faheem, A. F. Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. International Journal of Mechanical Sciences, 79, 31-37(2014)
[49] Ansari, R., Mohammadi, V., Faghih-Shojaei, M., Gholami, R., and Darabi, M. A. A geometrically non-linear plate model including surface stress effect for the pull-in instability analysis of rectangular nanoplates under hydrostatic and electrostatic actuations. International Journal of Non-Linear Mechanics, 67, 16-26(2014)
[50] Ansari, R., Gholami, R., Faghih-Shojaei, M., Mohammadi, V., and Sahmani, S. Surface stress effect on the pull-in instability of circular nanoplates. Acta Astronautica, 102, 140-150(2014)
[51] Radebe, I. S. and Adali, S. Effect of surface stress on the buckling of nonlocal nanoplates subject to material uncertainty. Latin American Journal of Solids and Structures, 56, 840-846(2015)
[52] Ansari, R., Ashrafi, M. A., Pourashraf, T., and Sahmani, S. Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory. Acta Astronautica, 109, 42-51(2015)
[53] Ansari, R., Shahabodini, A., Faghih-Shojaei, M., Mohammadi, V., and Gholami, R. On the bending and buckling behaviors of Mindlin nanoplates considering surface energies. Physica E, 57, 126-137(2014)
[54] Miller, R. E. and Shenoy, V. B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 11, 139-147(2000)
[55] Park, H. S. Surface stress effects on the critical buckling strains of silicon nanowires. Computational Materials Science, 51(1), 396-401(2012)
[56] Chiu, M. S. and Chen, T. Bending and resonance behavior of nanowires based on Timoshenko beam theory with high-order surface stress effects. Physica E, 54, 149-156(2013)
[57] Qiao, L. and Zheng, X. Effect of surface stress on the stiffness of micro/nanocantilevers:nanowire elastic modulus measured by nano-scale tensile and vibrational techniques. Journal of Applied Physics, 113(1), 013508(2013)
[58] Rouhi, H., Ansari, R., and Darvizeh, M. Size-dependent free vibration analysis of nanoshells based on the surface stress elasticity. Applied Mathematical Modelling, 40(4), 3128-3140(2016)
[59] Rouhi, H., Ansari, R., and Darvizeh, M. Analytical treatment of the nonlinear free vibration of cylindrical nanoshells based on a first-order shear deformable continuum model including surface influences. Acta Mechanica, 227(2016) DOI 10.1007/s00707-016-1595-4
[60] Zabow, G., Dodd, S. J., Moreland, J., and Koretsky, A. P. Fabrication of uniform cylindrical nanoshells and their use as spectrally tunable MRI contrast agents. Nanotechnology, 20, 385301(2009)
[61] Weingarten, V. I. and Seide, P. Elastic stability of thin-walled cylindrical and conical shells under combined external pressure and axial compression. AIAA Journal, 3, 913-920(1965)
[62] Hutchinson, J. W. Imperfection sensitivity of externally pressurized spherical shells. Journal of Applied Mechanics, 34(1), 49-55(1967)
[63] Kirshnamoorthy, G. Buckling of thin cylinders under combined external pressure and axial compression. Journal of Aircraft, 11, 65-68(1974)
[64] Bisagni, C. Numerical analysis and experimental correlation of composite shell buckling and postbuckling. Composites Part B:Engineering, 31(8), 655-667(2000)
[65] Teng, J. G. and Hong, T. Postbuckling analysis of elastic shells of revolution considering mode switching and interaction. International Journal of Solids and Structures, 43(3-4), 551-568(2006)
[66] Amabili, M. Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, Cambridge (2008)
[67] Donnell, L. H. Beam, Plates and Shells, McGraw-Hill, New York (1976)
[68] Vol'mir, A. S. Stability of Elastic Systems, No. FTD-MT-64-335, Foreign Technology Division, Wright-Patterson AFB, Ohio (1965)
[69] Ogata, S., Li, J., and Yip, S. Ideal pure shear strength of aluminum and copper. Science, 298, 807-811(2002)
[70] Zhu, R., Pan, E., Chung, P. W., Cai, X., Liew, K. M., and Buldum, A. Atomistic calculation of elastic moduli in strained silicon. Semiconductor Science and Technology, 21, 906-911(2006)
[71] Prinz, V. Y. and Golod, S. V. Elastic silicon-film-based nanoshells:formation, properties, and applications. Journal of Applied Mechanics and Technical Physics, 47(6), 867-878(2006)
[72] Huang, H. and Han, Q. Nonlinear buckling and postbuckling of heated functionally graded cylindrical shells under combined axial compression and radial pressure. International Journal of Non-Linear Mechanics, 44(2), 209-218(2009) |