[1] CHOI, S. and EASTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress and Exposition, ASME, San Francisco (1995) [2] BUONGIORNO, J. Convective transport in nanofluids. ASME Journal of Heat Transfer, 128, 240-250(2006) [3] KHAN, W. and POP, I. Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53, 2477-2483(2010) [4] HASHIM, H. A., ALSHOMRANI, A. S., and KHAN, M. Multiple physical aspects during the flow and heat transfer analysis of Carreau fluid with nanoparticles. Scientific Reports, 8, 1-14(2018) [5] JAFARYAR, M., SHEIKHOLESLAMI, M., LI, Z., and MORADI, R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. Journal of Thermal Analysis and Calorimetry, 135, 305-323(2019) [6] HAMID, A., HAFEEZ, A., KHAN, M., ALSHOMRANI, A. S., and ALGHAMDI, M. Heat transport features of magnetic water-graphene oxide nanofluid flow with thermal radiation:stability test. European Journal of Mechanics-B/Fluids, 76, 434-441(2019) [7] HAFEEZ, A., KHAN, M., and AHMED, J. Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk. Computer Methods and Programs in Biomedicine, 191, 105342(2020) [8] FOURIER, J. B. J. Theorie Analytique de la Chaleur, Didot, Paris, 499-508(1822) [9] CATTANEO, C. Sulla conduzione del calore. Atti del Seminario Matematico e Fisico dell' Universita di Modena e Reggio Emilia, 3, 83-101(1948) [10] CHRISTOV, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction. Mechanics Research Communications, 36, 481-486(2009) [11] CIARLETTA, M. and STRAUGHAN, B. Uniqueness and structural stability for the CattaneoChristov equations. Mechanics Research Communications, 37, 445-447(2010) [12] STRAUGHAN, B. Thermal convection with the Cattaneo-Christov model. International Journal of Heat and Mass Transfer, 53, 95-98(2010) [13] HAN, S., ZHENG, L., LI, C., and ZHANG, X. Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model. Applied Mathematics Letters, 38, 87-93(2014) [14] RAUF, A., SHEHZAD, S. A., ABBAS, Z., and HAYAT, T. Unsteady three-dimensional MHD flow of the micropolar fluid over an oscillatory disk with Cattaneo-Christov double diffusion. Applied Mathematics and Mechanics (English Edition), 40(10), 1471-1486(2019) https://doi.org/10.1007/s10483-019-2530-6 [15] RAUF, A., ABBAS, Z., and SHEHZAD, S. A. Utilization of Maxwell-Cattaneo law for MHD swirling flow through oscillatory disk subject to porous medium. Applied Mathematics and Mechanics (English Edition), 40(6), 837-850(2019) https://doi.org/10.1007/s10483-019-2488-9 [16] SULTI, F. A. Impact of Cattaneo-Christov heat flux model on stagnation-point flow towards a stretching sheet with slip effects. ASME Journal of Heat Transfer, 141, 022003(2019) [17] HAFEEZ, A., KHAN, M., and AHMED, J. Flow of Oldroyd-B fluid over a rotating disk with Cattaneo-Christov theory for heat and mass fluxes. Computer Methods and Programs in Biomedicine, 191, 105374(2020) [18] KHAN, M., AHMED, A., and AHMED, J. Transient flow of magnetized Maxwell nanofluid:Buongiorno model perspective of Cattaneo-Christov theory. Applied Mathematics and Mechanics (English Edition), 41(4), 655-666(2020) https://doi.org/10.1007/s10483-020-2593-9 [19] KHAN, M., AHMED, A., IRFAN, M., and AHMED, J. Analysis of Cattaneo-Christov theory for unsteady flow of Maxwell fluid over stretching cylinder. Journal of Thermal Analysis and Calorimetry (2020) https://doi.org/10.1007/s10973-020-09343-1 [20] VON KARMAN, T. Uberlaminare und turbulente Reibung. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik, 1, 233-252(1921) [21] GREGG, J. L. and SPARROW, E. M. Heat transfer from a rotating disk to fluids of any Prandtl number. ASME Journal of Heat Transfer, 81, 249-251(1959) [22] TURKYILMAZOGLU, M. Nanofluid flow and heat transfer due to a rotating disk. Computers and Fluids, 94, 139-146(2014) [23] AHMED, J., KHAN, M., and AHMED, L. Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink. Journal of Molecular Liquids, 287, 110853(2019) [24] KHAN, M., HAFEEZ, A., and AHMED, J. Impacts of non-linear radiation and activation energy on the axisymmetric rotating flow of Oldroyd-B fluid. Physica A:Statistical Mechanics and Its Applications (2020) https://doi.org/10.1016/j.physa.2019.124085 [25] HAFEEZ, A., KHAN, M., and AHMED, J. Thermal aspects of chemically reactive Oldroyd-B fluid flow over a rotating disk with Cattaneo-Christov heat flux theory. Journal of Thermal Analysis and Calorimetry (2020) https://doi.org/10.1007/s10973-020-09421-4 |