[1] ERINGEN, A. C. Simple microfluids. International Journal of Engineering Science, 2, 205-217(1964) [2] ERINGEN, A. C. Theory of micropolar fluids. Journal of Applied Mathematics and Mechanics, 16, 1-8(1966) [3] ASHRAF, M. and WEHGAL, A. R. MHD flow and heat transfer of micropolar fluid between two porous disks. Applied Mathematics and Mechanics (English Edition), 33(1), 51-64(2012) https://doi.org/10.1007/s10483-012-1533-6 [4] SI, X. H., ZHENG, L. C., ZHANG, X. X., and SI, X. Y. Flow of micropolar fluid between two orthogonally moving porous disks. Applied Mathematics and Mechanics (English Edition), 33(8), 963-975(2012) https://doi.org/10.1007/s10483-012-1598-8 [5] SUN, Y., SI, X., ZHENG, L., SHEN, Y., and ZHANG, X. The analysis of the flow of a micropolar fluid between two orthogonally moving porous disks with counter rotating directions. Central European Journal of Physics, 11, 601-614(2013) [6] TURKYILMAZOGLU, M. Flow of a micropolar fluid due to a porous stretching sheet and heat transfer. International Journal of Non-Linear Mechanics, 83, 59-64(2016) [7] CHOI, S. U. S. Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows. The American Society of Mechanical Engineers, 66, 99-105(1995) [8] HASHMI, M. M., HAYAT, T., and ALSAEDI, A. On the analytic solutions for squeezing flow of nanofluid between parallel disks. Nonlinear Analysis:Modelling and Control, 17, 418-430(2012) [9] SHEIKHOLESLAMI, M. and ROKNI, H. B. Effect of melting heat transfer on nanofluid flow in existence of magnetic field considering Buongiorno model. Chinese Journal of Physics, 55, 1115-1126(2017) [10] HSIAO, K. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia features. International Journal of Heat and Mass Transfer, 112, 983-990(2017) [11] HSIAO, K. To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-nanofluid with parameters control method. Energy, 130, 486-499(2017) [12] TURKYILMAZOGLU, M. Buongiorno model in a nanofluid filled asymmetric channel fulfilling zero net particle flux at the walls. International Journal of Heat and Mass Transfer, 125, 974-979(2018) [13] KHAN, M., AHMED, A., and AHMED, J. Transient flow of magnetized Maxwell nanofluid:Buongiorno model perspective of Cattaneo-Christov theory. Applied Mathematics and Mechanics (English Edition), 41(4), 655-666(2020) https://doi.org/10.1007/s10483-020-2593-9 [14] CATTANEO, C. Sulla Conduzionedelcalore. Attitudel Seminario Maermaticoe Fisico dell Universita di Modena e Reggio Emilia, 3, 481-486(1948) [15] HAYAT, T., QAYYUM, S., IMTIAZ, M., and ALSAEDI, A. Flow between two stretchable rotating disks with Cattaneo-Christov heat flux model. Results in Physics, 7, 126-133(2017) [16] HASHIM, M. and KHAN, M. On Cattaneo-Christov heat flux model for Carreau fluid flow over a slendering sheet. Results in Physics, 7, 310-319(2017) [17] LIU, L., ZHENG, L., LI, F., and ZHANG, X. Heat conduction with fractional Cattaneo-Christov upper-convective derivative flux model. International Journal of Thermal Sciences, 112, 421-426(2017) [18] LI, L., ZHENG, L., and LIU, F. Time fractional Cattaneo-Christov anomalous diffusion in comb frame with finite length of fingers. Journal of Molecular Liquids, 233, 326-333(2017) [19] RAUF, A., ABBAS, Z., SHEHZAD, S. A., ALSAEDI, A., and HAYAT, T. Numerical simulation of chemically reactive Powell-Eyring liquid flow with double diffusive Cattaneo-Christov heat and mass flux theories. Applied Mathematics and Mechanics (English Edition), 39(4), 467-476(2018) https://doi.org/10.1007/s10483-018-2314-8 [20] SHEHZAD, S. A., KHAN, S. U., ABBAS, Z., and RAUF, A. A revised Cattaneo-Christov micropolar viscoelastic nanofluid model with combined porosity and magnetic effects. Applied Mathematics and Mechanics (English Edition), 41(3), 521-532(2020) https://doi.org/10.1007/s10483-020-2581-5 [21] SIDDIQA, S., HINA, G., BEGUM, N., SALEEM, S., HOSSAIN, M. A., and GORLA, R. S. R. Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone. International Journal of Heat and Mass Transfer, 101, 608-613(2016) [22] XUN, S., ZHAO, J., ZHENG, L., and ZHANG, X. Bioconvection in rotating system immersed in nanofluid with temperature dependent viscosity and thermal conductivity. International Journal of Heat and Mass Transfer, 111, 1001-1006(2017) [23] RAJU, C. S. K., HOQUE, M. N., and SRIVASANKAR, T. Radiative flow of Casson fluid over a moving wedge filled with gyrotactic microorganisms. Advanced Powder Technology, 28, 575-583(2017) [24] CHAKRABORTY, T., DAS, K., and KUNDU, P. K. Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganisms with convective boundary conditions. Alexandria Engineering Journal, 57, 61-71(2018) [25] WAQAS, M., HAYAT, T., SHEHZAD, S. A., and ALSEADI, A. Transport of magnetohydrodynamic nanomaterial in a stratified medium considering gyrotactic microorganisms. Physica B:Condensed Matter, 529, 33-40(2018) [26] ABDELSALAM, S. I. and BHATTI, M. M. Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms. Applied Mathematics and Mechanics (English Edition), 41(5), 711-724(2020) https://doi.org/10.1007/s10483-020-2609-6 |