Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (1): 137-154.doi: https://doi.org/10.1007/s10483-024-3072-8
• Articles • Previous Articles Next Articles
Pan WANG1, Xiangcheng HAN1,2, Weibin WEN1,*(), Baolin WANG3, Jun LIANG1,2,*(
)
Received:
2023-08-27
Online:
2024-01-01
Published:
2023-12-26
Contact:
Weibin WEN, Jun LIANG
E-mail:wenwbin@126.com;liangjun@bit.edu.cn
Supported by:
2010 MSC Number:
Pan WANG, Xiangcheng HAN, Weibin WEN, Baolin WANG, Jun LIANG. Galerkin-based quasi-smooth manifold element (QSME) method for anisotropic heat conduction problems in composites with complex geometry. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 137-154.
1 | ZHANG, S., LI, X., ZUO, J., QIN, J., CHENG, K., FENG, Y., and BAO, W. Research progress on active thermal protection for hypersonic vehicles. Progress in Aerospace Sciences, 119, 100646 (2020) |
2 | CULLER, A. J., and MCNAMARA, J. J. Impact of fluid-thermal-structural coupling on response prediction of hypersonic skin panels. AIAA Journal, 49, 2393- 2406 (2011) |
3 | PANTANGI, V. K., MISHRA, S. C., MUTHUKUMAR, P., and REDDY, R. Studies on porous radiant burners for LPG (liquefied petroleum gas) cooking applications. Energy, 36, 6074- 6080 (2011) |
4 | GROMANN, D., JUTTLER, B., SCHLUSNUS, H., BARNER, J., and VUONG, A. V. Isogeometric simulation of turbine blades for aircraft engines. Computer Aided Geometric Design, 29, 519- 531 (2012) |
5 | HAHN, D. W., and OZISIK, M. N. Heat Conduction, John Wiley & Sons, Hoboken, New Jersey (2012) |
6 | WANG, B. L., and MAI, Y. W. Transient one-dimensional heat conduction problems solved by finite element. International Journal of Mechanical Sciences, 47, 303- 317 (2005) |
7 | YAO, X., WANG, Y., and LENG, J. A general finite element method: extension of variational analysis for nonlinear heat conduction with temperature-dependent properties and boundary conditions, 2021, and its implementation as local refinement. Computers & Mathematics with Applications, 100, 11- 29 (2021) |
8 | BAKALAKOS, S., KALOGERIS, I., and PAPADOPOULOS, V. An extended finite element method formulation for modeling multi-phase boundary interactions in steady state heat conduction problems. Composite Structures, 258, 113202 (2021) |
9 | KUBACKA, E., and OSTROWSKI, P. Heat conduction issue in biperiodic composite using finite difference method. Composite Structures, 261, 113310 (2021) |
10 | WU, X. H., and TAO, W. Q. Meshless method based on the local weak-forms for steady-state heat conduction problems. International Journal of Heat and Mass Transfer, 51, 3103- 3112 (2008) |
11 | MENG, Z., MA, Y., and MA, L. A fast interpolating meshless method for 3D heat conduction equations. Engineering Analysis with Boundary Elements, 145, 352- 362 (2022) |
12 | SINGH, A., SINGH, I. V., and PRAKASH, R. Meshless element free Galerkin method for unsteady nonlinear heat transfer problems. International Journal of Heat and Mass Transfer, 50, 1212- 1219 (2007) |
13 | BARTWAL, N., SHAHANE, S., ROY, S., and VANKA, S. P. Application of a high order accurate meshless method to solution of heat conduction in complex geometries. Computational Thermal Sciences, 14 (3), 1- 27 (2022) |
14 | TAN, F., TONG, D., LIANG, J., YI, X., JIAO, Y. Y., and LV, J. Two-dimensional numerical manifold method for heat conduction problems. Engineering Analysis with Boundary Elements, 137, 119- 138 (2022) |
15 | ZHANG, H. H., HAN, S. Y., FAN, L. F., and HUANG, D. The numerical manifold method for 2D transient heat conduction problems in functionally graded materials. Engineering Analysis with Boundary Elements, 88, 145- 155 (2018) |
16 |
WEN, W., JIAN, K., and LUO, S. 2D numerical manifold method based on quartic uniform B-spline interpolation and its application in thin plate bending. Applied Mathematics and Mechanics (English Edition), 34, 1017- 1030 (2013)
doi: 10.1007/s10483-013-1724-x |
17 | WANG, Z. P., TURTELTAUB, S., and ABDALLA, M. Shape optimization and optimal control for transient heat conduction problems using an isogeometric approach. Computers & Structures, 185, 59- 74 (2017) |
18 | YU, T., CHEN, B., NATARAJAN, S., and BUI, T. Q. A locally refined adaptive isogeometric analysis for steady-state heat conduction problems. Engineering Analysis with Boundary Elements, 117, 119- 131 (2020) |
19 | ZANG, Q., LIU, J., YE, W., and LIN, G. Isogeometric boundary element for analyzing steady-state heat conduction problems under spatially varying conductivity and internal heat source. Computers & Mathematics with Applications, 80, 1767- 1792 (2020) |
20 | YOON, M., HA, S. H., and CHO, S. Isogeometric shape design optimization of heat conduction problems. International Journal of Heat and Mass Transfer, 62, 272- 285 (2013) |
21 | SHI, G. H. Manifold method of material analysis. Transactions of 9th Army Conference on Applied Mathematics and Computing, U. S. Army Research office, Mineapolis, Minnesota (1991) |
22 | HE, J., LIU, Q., WU, Z., and XU, X. Modelling transient heat conduction of granular materials by numerical manifold method. Engineering Analysis with Boundary Elements, 86, 45- 55 (2018) |
23 | DONG, K., ZHANG, J., JIN, L., GU, B., and SUN, B. Multi-scale finite element analyses on the thermal conductive behaviors of 3D braided composites. Composite Structures, 143, 9- 22 (2016) |
24 | KREITH, F. and MANGLIK, R. M. Principles of Heat Transfer, Cengage Learning, Mason, OH (2017) |
25 | BELHAMADIA, Y., and SEAID, M. Computing enhancement of the nonlinear SPN approximations of radiative heat transfer in participating material. Journal of Computational and Applied Mathematics, 434, 115342 (2023) |
26 | MALEK, M., IZEM, N., MOHAMED, M. S., SEAID, M., and LAGHROUCHE, O. A partition of unity finite element method for three-dimensional transient diffusion problems with sharp gradients. Journal of Computational Physics, 396, 702- 717 (2019) |
27 | MALEK, M., IZEM, N., MOHAMED, M. S., and SEAID, M. A three-dimensional enriched finite element method for nonlinear transient heat transfer in functionally graded materials. International Journal of Heat and Mass Transfer, 155, 119804 (2020) |
28 | DIWAN, G. C., MOHAMED, M. S., SEAID, M., TREVELYAN, J., and LAGHROUCHE, O. Mixed enrichment for the finite element method in heterogeneous media. International Journal for Numerical Methods in Engineering, 101, 54- 78 (2015) |
29 | PAN, C. T., and HOCHENG, H. Evaluation of anisotropic thermal conductivity for unidirectional FRP in laser machining. Composites Part A: Applied Science and Manufacturing, 32, 1657- 1667 (2001) |
[1] | Jianhua QIN, Fei LIAO, Guodan DONG, Xiaolei YANG. Parallelization strategies for resolved simulations of fluid-structure-particle interactions [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 857-872. |
[2] | F. JAZINIDORCHEH, M. GHASSEMI. The viscous strip approach to simplify the calculation of the surface acoustic wave generated streaming [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 711-724. |
[3] | M. IBTESAM, S. NADEEM, J. ALZABUT. Numerical computations of magnetohydrodynamic mixed convective flow of Casson nanofluid in an open-ended cavity formed by earthquake-induced faults [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2215-2230. |
[4] | J. A. OTERO, Y. ESPINOSA-ALMEYDA, R. RODRÍGUEZ-RAMOS, J. MERODIO. Semi-analytical finite element method applied for characterizing micropolar fibrous composites [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2147-2164. |
[5] | Haoyang LI, Weijian LIU, Yuhong DONG. A rescaling algorithm for multi-relaxation-time lattice Boltzmann method towards turbulent flows with complex configurations [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1597-1612. |
[6] | Chenxue JIA, Zihao WANG, Donghui ZHANG, Taihua ZHANG, Xianhong MENG. Fracture of films caused by uniaxial tensions: a numerical model [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2093-2108. |
[7] | Wenjie SUN, Wentao MA, Fei ZHANG, Wei HONG, Bo LI. Snap-through path in a bistable dielectric elastomer actuator [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(8): 1159-1170. |
[8] | Si YUAN, Quan YUAN. Condensed Galerkin element of degree m for first-order initial-value problem with O(h2m+2) super-convergent nodal solutions [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 603-614. |
[9] | S. HUSSAIN, T. TAYEBI, T. ARMAGHANI, A. M. RASHAD, H. A. NABWEY. Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 447-466. |
[10] | Zheng HONG, Zhengyin YE, Kangling WU, Kun YE. Effect of anisotropic resistance characteristic on boundary-layer transitional flow [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1935-1950. |
[11] | M. KOHANSAL-VAJARGAH, R. ANSARI, M. FARAJI-OSKOUIE, M. BAZDID-VAHDATI. Vibration analysis of two-dimensional structures using micropolar elements [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 999-1012. |
[12] | Qingxiang LI, Ming PAN, Quan ZHOU, Yuhong DONG. Drag reduction of turbulent channel flows over an anisotropic porous wall with reduced spanwise permeability [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(7): 1041-1052. |
[13] | M. SHOJAEIFARD, M. R. BAYAT, M. BAGHANI. Swelling-induced finite bending of functionally graded pH-responsive hydrogels: a semi-analytical method [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(5): 679-694. |
[14] | Runjie SONG, Shaolong ZHANG, Jianxin LIU. Linear stability theory with the equivalent spanwise wavenumber correction in 3D boundary layers [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(3): 407-420. |
[15] | Lihao WANG, Weixi HUANG, Chunxiao XU, Lian SHEN, Zhaoshun ZHANG. Relationship between wall shear stresses and streamwise vortices in turbulent flows over wavy boundaries [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(3): 381-396. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||