Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (12): 2147-2164.doi: https://doi.org/10.1007/s10483-024-3195-6
• Articles • Previous Articles Next Articles
J. A. OTERO1, Y. ESPINOSA-ALMEYDA2, R. RODRÍGUEZ-RAMOS3,4, J. MERODIO5,*()
Received:
2024-07-19
Online:
2024-12-01
Published:
2024-11-30
Contact:
J. MERODIO
E-mail:merodioj@gmail.com
Supported by:
2010 MSC Number:
J. A. OTERO, Y. ESPINOSA-ALMEYDA, R. RODRÍGUEZ-RAMOS, J. MERODIO. Semi-analytical finite element method applied for characterizing micropolar fibrous composites. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2147-2164.
Table 1
Material data"
Phase constituent | ||||||
SyF | 2 097 | 1 033 | 114.8 | 4.364 | ||
PUF | 762.7 | 104 | 4.333 | 39.98 | 4.504 | |
Table 2
Effective stiffness properties (in GPa) for a bi-phase elastic FRC (SyF/PUF) with isotropic constituents and square periodic cells as a function of $ V_2 $"
0.05 | 1.024 356 | 0.789 586 | 0.782 901 | 1.123 882 | 0.116 477 | 0.117 685 |
0.15 | 1.128 963 | 0.845 813 | 0.828 104 | 1.415 613 | 0.132 825 | 0.139 042 |
0.25 | 1.258 426 | 0.904 922 | 0.881 102 | 1.711 725 | 0.150 367 | 0.164 907 |
0.35 | 1.421 265 | 0.966 540 | 0.944 186 | 2.013 507 | 0.170 812 | 0.197 064 |
0.45 | 1.629 217 | 1.031 368 | 1.020 851 | 2.322 923 | 0.196 913 | 0.238 676 |
0.55 | 1.898 475 | 1.104 638 | 1.117 119 | 2.643 357 | 0.233 955 | 0.296 000 |
0.65 | 2.252 212 | 1.206 856 | 1.245 265 | 2.981 711 | 0.295 106 | 0.383 791 |
Table 3
Effective stiffness properties (in GPa) for a bi-phase elastic FRC (SyF/PUF) with isotropic constituents and hexagonal periodic cells as a function of $ V_2 $"
0.05 | 1.023 879 | 0.790 063 | 0.782 901 | 1.123 881 | 0.117 685 |
0.15 | 1.123 966 | 0.850 806 | 0.828 102 | 1.415 612 | 0.139 039 |
0.25 | 1.242 545 | 0.920 726 | 0.881 080 | 1.711 713 | 0.164 849 |
0.35 | 1.386 318 | 1.000 944 | 0.944 033 | 2.013 421 | 0.196 683 |
0.45 | 1.565 603 | 1.092 268 | 1.020 088 | 2.322 494 | 0.236 974 |
0.55 | 1.795 818 | 1.195 802 | 1.113 889 | 2.641 541 | 0.289 792 |
0.65 | 2.099 323 | 1.315 442 | 1.232 814 | 2.974 712 | 0.362 676 |
Table 4
Effective properties of antiplane stiffness (in GPa) and torque (in N) obtained with the SAFEM and AHM for a bi-phase micropolar elastic FRC (SyF/PUF) with isotropic constituents and square cells as a function of $ V_2 $"
SAFEM | AHM | SAFEM | AHM | SAFEM | AHM | |||
0.05 | 0.133 877 | 0.133 877 | 0.107 031 | 0.107 031 | 0.117 685 | 0.117 685 | ||
0.15 | 0.186 612 | 0.186 612 | 0.123 849 | 0.123 849 | 0.139 042 | 0.139 042 | ||
0.25 | 0.242 141 | 0.242 141 | 0.144 216 | 0.144 216 | 0.164 907 | 0.164 907 | ||
0.35 | 0.301 572 | 0.301 572 | 0.169 539 | 0.169 539 | 0.197 064 | 0.197 064 | ||
0.45 | 0.366 866 | 0.366 866 | 0.202 306 | 0.202 306 | 0.238 676 | 0.238 676 | ||
0.55 | 0.441 903 | 0.441 903 | 0.247 446 | 0.247 446 | 0.296 000 | 0.296 000 | ||
0.65 | 0.535 831 | 0.535 829 | 0.316 577 | 0.316 575 | 0.383 791 | 0.383 788 | ||
SAFEM | AHM | SAFEM | AHM | SAFEM | AHM | |||
0.05 | 41.572 723 | 41.572 712 | 32.759 404 | 32.759 392 | 40.954 152 | 40.954 137 | ||
0.15 | 36.210 713 | 36.210 710 | 27.924 632 | 27.924 629 | 34.672 024 | 34.672 020 | ||
0.25 | 31.353 252 | 31.353 251 | 23.745 453 | 23.745 451 | 29.241 749 | 29.241 747 | ||
0.35 | 26.890 207 | 26.890 206 | 20.078 763 | 20.078 761 | 24.477 383 | 24.477 381 | ||
0.45 | 22.725 897 | 22.725 896 | 16.800 238 | 16.800 237 | 20.217 386 | 20.217 384 | ||
0.55 | 18.770 549 | 18.770 549 | 13.793 231 | 13.793 232 | 16.310 189 | 16.310 190 | ||
0.65 | 14.925 504 | 14.925 561 | 10.929 548 | 10.929 623 | 12.589 222 | 12.589 319 |
Table 5
Effective properties of antiplane stiffness (in GPa) and torque (in N) obtained with the SAFEM and AHM for a bi-phase micropolar elastic FRC (SyF/PUF) with isotropic constituents and hexagonal cells as a function of $ V_2 $"
SAFEM | AHM | SAFEM | AHM | SAFEM | AHM | |||
0.05 | 0.133 88 | 0.133 877 | 0.107 03 | 0.107 031 | 0.117 69 | 0.117 685 | ||
0.15 | 0.186 61 | 0.186 609 | 0.123 85 | 0.123 846 | 0.139 04 | 0.139 039 | ||
0.25 | 0.242 11 | 0.242 105 | 0.144 17 | 0.144 171 | 0.164 85 | 0.164 849 | ||
0.35 | 0.301 34 | 0.301 336 | 0.169 24 | 0.169 239 | 0.196 68 | 0.196 683 | ||
0.45 | 0.365 81 | 0.365 811 | 0.200 97 | 0.200 966 | 0.236 97 | 0.236 974 | ||
0.55 | 0.438 05 | 0.438 053 | 0.242 56 | 0.242 558 | 0.289 79 | 0.289 792 | ||
0.65 | 0.522 74 | 0.522 738 | 0.299 95 | 0.299 951 | 0.362 68 | 0.362 676 | ||
SAFEM | AHM | SAFEM | AHM | SAFEM | AHM | |||
0.05 | 41.572 75 | 41.572 714 | 32.759 43 | 32.759 395 | 40.954 19 | 40.954 141 | ||
0.15 | 36.211 26 | 36.211 253 | 27.925 34 | 27.925 335 | 34.672 95 | 34.672 937 | ||
0.25 | 31.359 27 | 31.359 261 | 23.753 27 | 23.753 261 | 29.251 90 | 29.251 894 | ||
0.35 | 26.918 17 | 26.918 164 | 20.115 09 | 20.115 089 | 24.524 59 | 24.524 584 | ||
0.45 | 22.811 47 | 22.811 462 | 16.911 42 | 16.911 419 | 20.361 86 | 20.361 850 | ||
0.55 | 18.976 38 | 18.976 374 | 14.060 68 | 14.060 673 | 16.657 70 | 16.657 694 | ||
0.65 | 15.356 94 | 15.356 938 | 11.490 14 | 11.490 139 | 13.317 64 | 13.317 634 |
Table 6
Effective stiffness (in GPa) and torque (in N) properties for a bi-phase micropolar elastic FRC (SyF/PUF) with isotropic constituents and square cells as a function of $ V_2 $"
0.05 | 1.014 76 | 0.789 04 | 0.783 45 | 1.103 22 | 0.119 13 | 0.104 85 | 0.133 88 | 0.107 03 | 0.117 69 |
0.15 | 1.116 94 | 0.844 17 | 0.829 82 | 1.371 12 | 0.141 24 | 0.114 82 | 0.186 61 | 0.123 85 | 0.139 04 |
0.25 | 1.242 85 | 0.902 33 | 0.884 08 | 1.643 68 | 0.165 22 | 0.125 23 | 0.242 14 | 0.144 22 | 0.164 91 |
0.35 | 1.400 29 | 0.963 44 | 0.948 50 | 1.922 23 | 0.192 89 | 0.137 55 | 0.301 57 | 0.169 54 | 0.197 06 |
0.45 | 1.599 86 | 1.028 70 | 1.026 56 | 2.208 81 | 0.227 13 | 0.154 15 | 0.366 87 | 0.202 31 | 0.238 68 |
0.55 | 1.856 05 | 1.103 54 | 1.124 14 | 2.506 91 | 0.273 37 | 0.179 64 | 0.441 90 | 0.247 45 | 0.296 00 |
0.65 | 2.189 90 | 1.207 15 | 1.253 09 | 2.823 50 | 0.344 72 | 0.225 64 | 0.535 83 | 0.316 58 | 0.383 79 |
0.05 | 46.762 28 | 50.298 44 | 38.238 34 | 29.745 01 | 41.572 72 | 32.759 40 | 40.954 15 | ||
0.15 | 37.370 71 | 44.522 50 | 28.993 24 | 21.511 66 | 36.210 71 | 27.924 63 | 34.672 02 | ||
0.25 | 30.699 08 | 39.045 97 | 22.544 27 | 16.052 45 | 31.353 25 | 23.745 45 | 29.241 75 | ||
0.35 | 25.497 76 | 33.820 13 | 17.833 03 | 12.312 58 | 26.890 21 | 20.078 76 | 24.477 38 | ||
0.45 | 21.162 49 | 28.778 62 | 14.253 77 | 9.693 75 | 22.725 90 | 16.800 24 | 20.217 39 | ||
0.55 | 17.351 16 | 23.832 67 | 11.428 80 | 7.832 42 | 18.770 55 | 13.793 23 | 16.310 19 | ||
0.65 | 13.825 90 | 18.844 64 | 9.100 63 | 6.496 79 | 14.925 50 | 10.929 55 | 12.589 22 |
Table 7
Effective stiffness (in GPa) and torque (in N) for a bi-phase micropolar elastic FRC (SyF/PUF) with isotropic constituents and hexagonal cells as a function of $ V_2 $"
0.05 | 1.014 30 | 0.789 50 | 0.783 45 | 1.103 22 | 0.119 54 | 0.105 27 | 0.133 88 | 0.107 03 | 0.117 69 |
0.15 | 1.112 18 | 0.848 92 | 0.829 82 | 1.371 12 | 0.144 84 | 0.118 42 | 0.186 61 | 0.123 85 | 0.139 04 |
0.25 | 1.227 85 | 0.917 26 | 0.884 06 | 1.643 66 | 0.175 28 | 0.135 31 | 0.242 11 | 0.144 17 | 0.164 85 |
0.35 | 1.367 59 | 0.995 64 | 0.948 35 | 1.922 14 | 0.213 56 | 0.158 39 | 0.301 34 | 0.169 24 | 0.196 68 |
0.45 | 1.540 99 | 1.084 99 | 1.025 80 | 2.208 37 | 0.264 20 | 0.191 80 | 0.365 81 | 0.200 97 | 0.236 97 |
0.55 | 1.762 16 | 1.186 74 | 1.120 99 | 2.505 05 | 0.333 77 | 0.241 65 | 0.438 05 | 0.242 56 | 0.289 79 |
0.65 | 2.051 25 | 1.305 22 | 1.241 13 | 2.816 44 | 0.430 52 | 0.315 51 | 0.522 74 | 0.299 95 | 0.362 68 |
0.05 | 46.667 07 | 50.298 45 | 38.336 84 | 29.843 50 | 41.572 75 | 32.759 43 | 40.954 19 | ||
0.15 | 36.893 90 | 44.523 43 | 29.502 25 | 22.020 59 | 36.211 26 | 27.925 34 | 34.672 95 | ||
0.25 | 29.910 82 | 39.056 97 | 23.391 85 | 16.898 99 | 31.359 27 | 23.753 27 | 29.251 90 | ||
0.35 | 24.558 57 | 33.873 72 | 18.852 42 | 13.326 39 | 26.918 17 | 20.115 09 | 24.524 59 | ||
0.45 | 20.252 72 | 28.947 25 | 15.305 47 | 10.725 54 | 22.811 47 | 16.911 42 | 20.361 86 | ||
0.55 | 16.669 21 | 24.245 95 | 12.433 77 | 8.781 46 | 18.976 38 | 14.060 68 | 16.657 70 | ||
0.65 | 13.608 92 | 19.727 92 | 10.046 25 | 7.307 89 | 15.356 94 | 11.490 14 | 13.317 64 |
1 | KHLOPOTIN, A., OLSSON, P., and LARSSON, F. A. Transformational cloaking from seismic surface waves by micropolar metamaterials with finite couple stiffness. Wave Motion, 58, 53- 67 (2015) |
2 | REDA, H., RAHALI, Y., GANGHOFFER, J. F., and LAKISS, H. Wave propagation in 3D viscoelastic auxetic and textile materials by homogenized continuum micropolar models. Composite Structures, 141, 328- 345 (2016) |
3 | YANG, J. F. C., and LAKES, R. S. Experimental study of micropolar and couple stress elasticity in compact bone in bending. Journal of Biomechanics, 15 (2), 91- 98 (1982) |
4 | KAMRIN, K., and HENANN, D. L. Nonlocal modeling of granular flows down inclines. Soft Matter, 11 (1), 179- 185 (2015) |
5 | WANG, K., SUN, W., SALAGER, S., NA, S., and KHADDOUR, G. Identifying material parameters for a micro-polar plasticity model via X-ray micro-computed tomographic (CT) images: lessons learned from the curve-fitting exercises. International Journal for Multiscale Computational Engineering, 14 (4), 389- 413 (2016) |
6 | ERINGEN, A. C. Microcontinuum Field Theories: $ \rm Ⅱ. $ Fluent Media, Springer, New York (2001) |
7 | ERINGEN, A. C. Microcontinuum Field Theories: $ \rm I. $ Foundations and Solids, Springer, New York (2012) |
8 | MEKHEIMER, K. S., and EL-KOT, M. A. The micropolar fluid model for blood flow through a tapered artery with a stenosis. Acta Mechanica Sinica, 24 (6), 637- 644 (2008) |
9 | FRENZEL, T., KADIC, M., and WEGENER, M. Three-dimensional mechanical metamaterials with a twist. Science, 358, 1072- 1074 (1999) |
10 | DIEBELS, S. A micropolar theory of porous media: constitutive modelling. Transport in Porous Media, 34 (1), 193- 208 (1999) |
11 |
HUANG, L., and ZHAO, C. G. A micropolar mixture theory of multi-component porous media. Applied Mathematics and Mechanics (English Edition), 30 (5), 617- 630 (2009)
doi: 10.1007/s10483-009-0508-x |
12 | DE BORST, R., and SLUYS, L. J. Localisation in a Cosserat continuum under static and dynamic loading conditions. Computer Methods in Applied Mechanics and Engineering, 90, 805- 827 (1991) |
13 | BAUER, S., SCHÄFER, M., GRAMMENOUDIS, P., and TSAKMAKIS, C. Three-dimensional finite elements for large deformation micropolar elasticity. Computer Methods in Applied Mechanics and Engineering, 199 (41-44), 2643- 2654 (2010) |
14 | ERDELJ, S. G., JELENIĆ, G., and IBRAHIMBEGOVIĆ, A. Geometrically non-linear 3D finite-element analysis of micropolar continuum. International Journal of Solids and Structures, 202, 745- 764 (2020) |
15 | BELYTSCHKO, T., YUN, Y. L., and GU, L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 37 (2), 229- 256 (1994) |
16 | LIU, W. K., JUN, S., and ZHANG, Y. F. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 20 (8-9), 1081- 1106 (1995) |
17 | SULSKY, D., CHEN, Z., and SCHREYER, H. L. A particle method for history-dependent materials. Computer Methods in Applied Mechanics and Engineering, 118 (1-2), 179- 196 (1994) |
18 | FOREST, S., DENDIEVE, R., and CANOVA, G. R. Estimating the overall properties of heterogeneous Cosserat materials. Modelling and Simulation in Materials Science and Engineering, 7 (5), 829- 840 (1999) |
19 | FOREST, S., BARBE, F., and CAILLETAUD, G. Cosserat modeling of size effects in the mechanical behavior of polycrystals and multi-phase materials. International Journal of Solids and Structures, 37, 7105- 7126 (2000) |
20 | CHENG, Z. Q., and HE, L. H. Micropolar elastic fields due to a spherical inclusion. International Journal of Engineering Science, 33 (3), 389- 397 (1995) |
21 | CHENG, Z. Q., and HE, L. H. Micropolar elastic fields due to a circular cylindrical inclusion. International Journal of Engineering Science, 35 (7), 659- 668 (1997) |
22 | SHARMA, P., and DASGUPTA, A. Average elastic field and scale-dependent overall properties of heterogeneous micropolar materials containing spherical and cylindrical inhomogeneities. Physical Review B, 66, 224110 (2002) |
23 | LIU, X. N., and HU, G. K. A continue micromechanical theory of overall plasticity for particulate composites including particle size effect. International Journal of Plasticity, 21 (4), 777- 799 (2005) |
24 | KOTIN, Y. V., POLILOV, A. N., and VLASOV, D. D. "Van Fo Fy method'' in the micromechanics of fibrous composites. Mechanics of Composite Materials, 59, 847- 868 (2023) |
25 | FRANCIS, N. M., POURAHMADIAN, F., LEBENSOHN, R. A., and DINGREVILLE, R. A fast Fourier transform-based solver for elastic micropolar composites. Computer Methods in Applied Mechanics and Engineering, 418, 116510 (2024) |
26 | OSTOJA-STARZEWSKI, M., and JASIUK, I. Stress invariance in planar Cosserat elasticity. Proceedings of the Royal Society of London: Series A, 451, 453- 470 (1995) |
27 | YUAN, X., and TOMITA, Y. Effective properties of Cosserat composites with periodic microstructure. Mechanics Research Communications, 28 (3), 265- 270 (2001) |
28 | SACK, K. L., SKATULLA, S., and SANSOUR, C. Biological tissue mechanics with fibres modelled as one-dimensional Cosserat continua. applications to cardiac tissue. International Journal of Solids and Structures, 81, 84- 94 (2016) |
29 | EREMEYEV, V. A., SKRZAT, A., and STACHOWICZ, F. Linear micropolar elasticity analysis of stresses in bones under static loads. Strength of Materials, 49, 575- 585 (2017) |
30 | RODRÍGUEZ-RAMOS, R., ESPINOSA-ALMEYDA, Y., GUINOVART-SANJUÁN, D., CAMACHO-MONTES, H., RODRÍGUEZ-BERMÚDEZ, P., BRITO-SANTANA, H., OTERO, J. A., and SABINA, F. J. Analysis of micropolar elastic multi-laminated composite and its application to bioceramic materials for bone reconstruction. Interface Focus, 14, 20230064 (2024) |
31 | RODRÍGUEZ-RAMOS, R., YANES, V., ESPINOSA-ALMEYDA, Y., OTERO, J. A., SABINA, F. J., SÁNCHEZ-VALDÉS, C. F., and LEBON, F. Micro-macro asymptotic approach applied to heterogeneous elastic micropolar media: analysis of some examples. International Journal of Solids and Structures, 239-240, 111444 (2022) |
32 | YANES, V., SABINA, F. J., ESPINOSA-ALMEYDA, Y., OTERO, J. A., and RODRÍGUEZ-RAMOS, R. Asymptotic homogenization approach applied to Cosserat heterogeneous media. Mechanics and Physics of Structured Media, Academic Press, New York (2022) |
33 | SANCHEZ-PALENCIA, E. Non-Homogeneous Media and Vibration Theory, Springer-Verlag, Moscow (1980) |
34 | SANCHEZ-PALENCIA, E. Homogenization Techniques for Composite Media, Springer-Verlag, Moscow (1985) |
35 | BAKHVALOV, N. and PANASENKO, G. Homogenisation: Averaging Processes in Periodic Media, Kluwer Academic Publisher, the Netherlands (1989) |
36 | GORBACHEV, V. I., and EMEL'YANOV, A. N. Homogenization of the equations of the Cosserat theory of elasticity of inhomogeneous bodies. Mechanics of Solids, 49 (1), 73- 82 (2014) |
37 | NOWACKI, W. The linear theory of micropolar eelasticity. Micropolar Elasticity. International Centre for Mechanical Sciences, Springer, Vienna (1974) |
38 | NOWACKI, W. Theory of Asymmetric Elasticity, Pergamon-Press, Moscow (1986) |
39 | ERINGEN, A. C. Microcontinuum Field Theories $ \rm I $: Foundations and Solids, Springer-Verlag, New York (1999) |
40 | PARTON, V. Z., and KUDRYAVTSEV, B. A. Engineering Mechanics of Composite Structures, CRC Press, Moscow (1993) |
41 | AVELLANEDA, R., RODRIGUEZ-ALEMAN, S., and OTERO, J. A. Semi-analytical method for computing effective thermoelastic properties in fiber-reinforced composite materials. Applied Science, 11, 5354 (2021) |
42 | ZIENKIEWICZ, O. C., TAYLOR, R. L., and ZHU, J. Z. The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann, Oxford (2013) |
43 | EREMEYEV, V., and PIETRASZKIEWICZ, W. Material symmetry group of the non-linear polar-elastic continuum. International Journal of Solids and Structures, 49 (14), 1993- 2005 (2012) |
44 | KWON, Y., and BANG, H. The Finite Element Method Using MATLAB, CRC Press, Washington D. C. (2000) |
45 | CHANDRUPATLA, T., and BELEGUNDU, A. Introduction to Finite Elements in Engineering, Pearson Education, Harlow (2012) |
46 | HASSANPOUR, S., and HEPPLER, G. R. Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations. Mathematics and Mechanics of Solids, 22, 224- 242 (2015) |
47 | ROYER, D., and DIEULESAINT, E. Elastic Waves in Solids $ \rm I $: Free and Guided Propagation, Springer Science & Business Media, Berlin (1993) |
48 | RODRÍGUEZ-RAMOS, R., SABINA, F. J., GUINOVART-DÍAZ, R., and BRAVO-CASTILLERO, J. Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents-I: elastic and square symmetry. Mechanics of Materials, 33 (4), 223- 235 (2001) |
[1] | M. IBTESAM, S. NADEEM, J. ALZABUT. Numerical computations of magnetohydrodynamic mixed convective flow of Casson nanofluid in an open-ended cavity formed by earthquake-induced faults [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2215-2230. |
[2] | Pan WANG, Xiangcheng HAN, Weibin WEN, Baolin WANG, Jun LIANG. Galerkin-based quasi-smooth manifold element (QSME) method for anisotropic heat conduction problems in composites with complex geometry [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 137-154. |
[3] | Yanpeng YUE, Yongping WAN. Theoretical study on dynamic effective electroelastic properties of random piezoelectric composites with aligned inhomogeneities [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(4): 525-546. |
[4] | Chenxue JIA, Zihao WANG, Donghui ZHANG, Taihua ZHANG, Xianhong MENG. Fracture of films caused by uniaxial tensions: a numerical model [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2093-2108. |
[5] | Wenjie SUN, Wentao MA, Fei ZHANG, Wei HONG, Bo LI. Snap-through path in a bistable dielectric elastomer actuator [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(8): 1159-1170. |
[6] | Si YUAN, Quan YUAN. Condensed Galerkin element of degree m for first-order initial-value problem with O(h2m+2) super-convergent nodal solutions [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 603-614. |
[7] | S. HUSSAIN, T. TAYEBI, T. ARMAGHANI, A. M. RASHAD, H. A. NABWEY. Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 447-466. |
[8] | Yu CHEN, Junhong GUO. Effective property of piezoelectric composites containing coated nano-elliptical fibers with interfacial debonding [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(11): 1701-1716. |
[9] | M. KOHANSAL-VAJARGAH, R. ANSARI, M. FARAJI-OSKOUIE, M. BAZDID-VAHDATI. Vibration analysis of two-dimensional structures using micropolar elements [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 999-1012. |
[10] | M. SHOJAEIFARD, M. R. BAYAT, M. BAGHANI. Swelling-induced finite bending of functionally graded pH-responsive hydrogels: a semi-analytical method [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(5): 679-694. |
[11] | Jincun LIU, Hong LI, Yang LIU, Zhichao FANG. Reduced-order finite element method based on POD for fractional Tricomi-type equation [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(5): 647-658. |
[12] | Jikun ZHAO, Shipeng MAO, Weiying ZHENG. Anisotropic adaptive finite element method for magnetohydrodynamic flow at high Hartmann numbers [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(11): 1479-1500. |
[13] | Hongbo GUAN, Dongyang SHI. P1-nonconforming triangular finite element method for elliptic and parabolic interface problems [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(9): 1197-1212. |
[14] | Qing XIANG;Zheng-nan YIN. Investigation of temperature effect on stress of flexspline [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(6): 791-798. |
[15] | Yue-wu LIU;Wei-ping OU-YANG;Pei-hua ZHAO;Qian LU;Hui-jun FANG. Numerical well test for well with finite conductivity vertical fracture in coalbed [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(6): 729-740. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||