[1] Aziz A K, Kellogg R B, Stephens A B. Least-squares methods f or elliptic systems [J]. MathComp, 1985, 44:53~70. [2] Bramble J H, Nitsche J A. A generalized Ritz-least-squares method for Dirichlet problems [J] .SIAM J Numer Anal, 1973, 10:81~93. [3] Raviart R A, Thomas J M. A mixed finite element method for 2nd elliptic problems[A]. In:MathAspects of the FEM, Lecture Notes in Math [C]. Vol 606, Berlin and New York:Springer-Verlag,1977, 292~315. [4] Brezzi F. On the existence, uniqueness and approximation of saddle point problems arising from La&grange multipliers[J]. RAIRO Anal Numer, 1974, 8:129~151. [5] Carey G F, Oden J T. Finite Element:A Second Course [M]. Vol Ⅱ. Englewood Cliffs N J:Print&ice-Hall, 1983. [6] Pehlivanov A I, Carey G F, Lazarov R D. Least-squares mixed finite element f or second-order ellip&tic problems[J]. SIAM J Numer Anal, 1994, 5:1368~1377. [7] Pehlivanov A I, Carey G F. Error estimates for least-squares mixed f inite elements[J]. Math ModelNumer Anal, 1994, 5:517~537. [8] Cai Z, Lazarov R, Manteuffel T A, et al. First-order system least squares for second-order partialdifferential equations Part I. [J]. SIAM J Numer Anal, 1994, 6:1785~1799. [9] Johnson C, Thomee V. Error estimates for some mixed f inite element methods for parabolic typeproblems[J]. RAIRO Anal Numer, 1981, 15:41~78. [10] Girault V, Raviart P A. Finite element approximation of the Naviart-Stokes equations [A]. In:Lecture Notes in Mathematics [C]. Vol 749, Berlin, Heidelberg, New York:Springer-Verlag,1979. [11] Wheeler M F. A priori error estimates for Galerkin approximations to parabolic partial differential e&quations[J]. SIAM J Numer Anal, 1973, 4:723~758. |