[1] Kennard, E. H. Cavitation in an elastic liquid. Physical Review, 63(5-6), 172-181 (1943)
[2] Felippa, C. A. and Deruntz, J. A. Finite element analysis of shock-induced hull cavitation. Com-puter Methods in Applied Mechanics and Engineering, 44(3), 297-337 (1984)
[3] Ranlet, D., DiMaggio, F. L., Bleich, H. H., and Baron, M. L. Elastic response of submerged shellswith internally attached structures to shock loading. Computers and Structures, 7(3), 355-364(1977)
[4] Gong, Z. X., Lu, C. J., and Huang, H. X. Accuracy analysis of immersed boundary methodusing method of manufactured solutions. Applied Mathematics and Mechanics (English Edition),31(10), 1197-1208 (2010) DOI 10.1007/s10483-010-1353-x
[5] Astley, R. J. Transient wave envelope elements for wave problems. Journal of Sound and Vibration,192(1), 245-261 (1996)
[6] Geers, T. L. Residual potential and approximate methods for three-dimensional fluid-structureinteraction problems. Journal of the Acoustical Society of America, 49(5), 1505-1510 (1971)
[7] Einar, M. R. and Anthony, T. P. A Legendre spectral element method for the Stefan problem.International Journal for Numerical Methods in Engineering, 24(12), 2273-2299 (1987)
[8] Komatitsch, D. and Vilotte, J. P. The spectral element method: an efficient tool to simulatethe seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society ofAmerica, 88(2), 368-392 (1998)
[9] Mulder, W. A. Spurious modes in finite-element discretizations of the wave equation may not beall that bad. Applied Numerical Mathematics, 30(4), 425-445 (1999)
[10] Giannakouros, J. A spectral element-FCT method for the compressible euler equations. Journalof Computational Physics, 115(1), 65-85 (1994)
[11] Fornberg, B. A Practical Guide to Pseudo spectral Methods, Cambridge University Press, Cam-bridge (1998)
[12] Fischer, P. F. Analysis and application of a parallel spectral element method for the solution ofthe Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 80(1-3),483-491 (1990)
[13] Patera, A. T. A spectral element method for fluid dynamics: laminar flow in a channel expansion.Journal of Computational Physics, 54(3), 468-488 (1984)
[14] Michael, A. S. Advanced Computational Techniques for the Analysis of 3D Fluid-Structure Inter-action with Cavitation, Ph. D. dissertation, University of Colorado at Boulder, 10-65 (2002)
[15] Bleich, H. H. and Sandler, I. S. Interaction between structures and bilinear fluids. InternationalJournal of Solids and Structures, 6(5), 617-639 (1970)
[16] Priolo, E., Carcione, J. M., and Seriani, G. Numerical simulation of interface waves by high-orderspectral modeling techniques. Journal of the Acoustical Society of America, 95(2), 681-693 (1994)
[17] Taflove, A. A perspective on the 40-year history of FDTD computational electrodynamics. AppliedComputational Electromagnetics Society Journal, 22(1), 1-21 (2007)
[18] Felippa, C. A. and DeRuntz, J. A. Finite element analysis of shock-induced hull cavitation. Com-puter Methods in Applied Mechanics and Engineering, 44(3), 297-337 (1984)
[19] Hibbitt, Karlsson, and Sorensen Inc. ABAQUS Analysis User’s Manual, http://abaqus.civil.uwa.edu.au:2080/v6.10/index.html (2010)
[20] Geers, T. L. An objective error measure for the comparison of calculated and measured transientresponse histories. The Shock and Vibration Bulletin, 54(2), 99-108 (1984)
[21] Huang, H. Transient interaction of plane acoustic waves with a spherical elastic shell. Journal ofthe Acoustical Society of America, 45(3), 661-670 (1969)
[22] Huang, H. and Mair, H. U. Neoclassical solution of transient interaction of plane acoustic waveswith a spherical elastic shell. Shock and Vibration, 3(2), 85-98 (1996)
[23] Mu, J. L., Zhu, X., and Zhang, Z. H. A study on numerical simulation of stiffened plate responseunder underwater explosion (in Chinese). Ship and Ocean Engineering, 6, 12-16 (2006) |