Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (9): 1499-1522.doi: https://doi.org/10.1007/s10483-024-3144-7
收稿日期:
2024-05-08
出版日期:
2024-09-01
发布日期:
2024-08-27
H. ASGHARI1, L. MILLER2, R. PENTA2,*(), J. MERODIO1
Received:
2024-05-08
Online:
2024-09-01
Published:
2024-08-27
Contact:
R. PENTA
E-mail:Raimondo.Penta@glasgow.ac.uk
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1499-1522.
H. ASGHARI, L. MILLER, R. PENTA, J. MERODIO. On an isotropic porous solid cylinder: the analytical solution and sensitivity analysis of the pressure[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1499-1522.
1 | BIOT, M. A. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 26 (2), 182- 185 (1955) |
2 | BIOT, M. A. General solutions of the equations of elasticity and consolidation for a porous material. Journal of Applied Physics, 23 (1), 91- 96 (1956) |
3 | BIOT, M. A. Theory of propagation of elastic waves in a fluid-saturated porous solid, Ⅱ: higher frequency range. The Journal of the Acoustical Society of America, 28 (2), 179- 191 (1956) |
4 | BIOT, M. A. Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33 (4), 1482- 1498 (1962) |
5 | COWIN, S. C. Bone poroelasticity. Journal of Biomechanics, 32 (3), 217- 238 (1999) |
6 | WEINER, S., and WAGNER, H. D. The material bone: structure-mechanical function relations. Annual Review of Materials Science, 28 (1), 271- 298 (1998) |
7 | COOKŠÒN, A., LEE, J., MICHLER, C., CHABINIOK, R., HYDE, E., NORDSLETTEN, D., SINCLAIR, M., SIEBES, M., and SMITH, N. A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics. Journal of Biomechanics, 45 (5), 850- 855 (2012) |
8 | MAY-NEWMAN, K., and MCCULLOCH, A. D. Homogenization modeling for the mechanics of perfused myocardium. Progress in Biophysics and Molecular Biology, 69 (2), 463- 481 (1998) |
9 | BUKAC, M., YOTOV, I., ZAKERZADEH, R., and ZUNINO, P. Effects of Poroelasticity on Fluid-Structure Interaction in Arteries: a Computational Sensitivity Study, Springer International Publishing, Berlin, 197–220 (2015) |
10 | CHAPELLE, D., GERBEAU, J. F., SAINTE-MARIE, J., and VIGNON-CLEMENTEL, I. E. A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Computational Mechanics, 46 (1), 91- 101 (2010) |
11 | BOTTARO, A., and ANSALDI, T. On the infusion of a therapeutic agent into a solid tumor modeled as a poroelastic medium. Journal of Biomechanical Engineering, 134 (8), 084501 (2012) |
12 | FLESSNER, M. F. The role of extracellular matrix in transperitoneal transport of water and solutes. Peritoneal Dialysis International, 21 (3), S24- S29 (2001) |
13 | CHALASANI, R., POOLE-WARREN, L., CONWAY, R. M., and BEN-NISSAN, B. Porous orbital implants in enucleation: a systematic review. Survey of Ophthalmology, 52 (2), 145- 155 (2007) |
14 | KARAGEORGIOU, V., and KAPLAN, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26 (27), 5474- 5491 (2005) |
15 | KÜMPEL, H. J. Poroelasticity: parameters reviewed. Geophysical Journal International, 105 (3), 783- 799 (1991) |
16 | WANG, H. F. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, Princeton University Press, Princeton (2017) |
17 | CHENG, A. H. D. Analytical Solution, Springer International Publishing, Berlin 229- 396 (2016) |
18 | LEEUW, D. The theory of three-dimensional consolidation applied to cylindrical bodies. Proceeding of the 6th ICSMFE, Shanghai (1965) |
19 | CARCIONE, J. M., MORENCY, C., and SANTOS, J. E. Computational poroelasticity: a review. Geophysics, 75 (5), 75A229- 75A243 (2010) |
20 | SALTELLI, A., RATTO, M., ANDRES, T., CAMPOLONGO, F., CARIBONI, J., GATELLI, D., SAISANA, M., and TARANTOLA, S. Global Sensitivity Analysis: the Primer, John Wiley and Sons, New York (2008) |
21 | MEI, C., and VERNESCU, B. Homogenization Methods for Multiscale Mechanics, World Scientific, Singapore (2010) |
22 | SALTELLI, A., TARANTOLA, S., and CHAN, K. S. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 41 (1), 39- 56 (1999) |
23 | ANSTETT-COLLIN, F., MARA, T., and BASSET, M. Application of global sensitivity analysis to a tire model with correlated inputs. Simulation Modelling Practice and Theory, 44, 54- 62 (2014) |
24 | SAISANA, M., SALTELLI, A., and TARANTOLA, S. Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators. Journal of the Royal Statistical Society: Series A, 168 (2), 307- 323 (2005) |
25 | ASGHARI, H., TOPOL, H., MARKERT, B., and MERODIO, J. Application of sensitivity analysis in extension, inflation, and torsion of residually stressed circular cylindrical tubes. Probabilistic Engineering Mechanics, 73, 103469 (2023) |
26 | BECKER, W., OAKLEY, J. E., SURACE, C., GILI, P., ROWSON, J., and WORDEN, K. Bayesian sensitivity analysis of a nonlinear finite element model. Mechanical Systems and Signal Processing, 32, 18- 31 (2012) |
27 | NARASIMHA, K. V., KUMAR, R. K., and BOHARA, P. C. A sensitivity analysis of design attributes and operating conditions on tyre operating temperatures and rolling resistance using finite element analysis. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automob, 220 (5), 501- 517 (2006) |
28 | SCHAFER, F., STURDY, J., MESEK, M., SINEK, A., BIALECKI, R., OSTROWSKI, Z., MELKA, B., NOWAK, M., and HELLEVIK, L. R. Uncertainty quantification and sensitivity analysis during the development and validation of numerical artery models. ACM Transactions on Modeling and Computer Simulation, 32, 256- 262 (2022) |
29 | FREY, H. C., and PATIL, S. R. Identification and review of sensitivity analysis methods. Risk Analysis, 22 (3), 553- 578 (2002) |
30 |
ASGHARI, H., TOPOL, H., MARKERT, B., and MERODIO, J. Application of the extended Fourier amplitude sensitivity testing (FAST) method to inflated, axial stretched, and residually stressed cylinders. Applied Mathematics and Mechanics (English Edition), 44 (12), 2139- 2162 (2023)
doi: 10.1007/s10483-023-3060-6 |
31 | COWIN, S. C., GAILANI, G., and BENALLA, M. Hierarchical poroelasticity: movement of interstitial fluid between porosity levels in bones. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367 (1902), 3401- 3444 (2009) |
32 | PERRIN, E., BOU-SAID, B., and MASSI, F. Numerical modeling of bone as a multiscale poroelastic material by the homogenization technique. Journal of the Mechanical Behavior of Biomedical Materials, 91, 373- 382 (2019) |
33 | COWIN, S. C., and CARDOSO, L. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. Journal of Biomechanics, 48 (5), 842- 854 (2015) |
34 | SÁNCHEZ, M. T., PÉREZ, M. Á., and GARCÍA-AZNAR, J. M. The role of fluid flow on bone mechanobiology: mathematical modeling and simulation. Computational Geosciences, 25, 823- 830 (2021) |
35 | SOLEIMANI, K., GHASEMLOONIA, A., and SUDAK, L. J. Interstitial fluid transport in cortical bone porosities: effects of blood pressure and mass exchange using porous media theory. Mechanics of Materials, 193, 104981 (2024) |
36 | GHIASI, M. S., CHEN, J., VAZIRI, A., RODRIGUEZ, E. K., and NAZARIAN, A. Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Reports, 6, 87- 100 (2017) |
37 | LIU, C., CARRERA, R., FLAMINI, V., KENNY, L., CABAHUG-ZUCKERMAN, P., GEORGE, B. M., HUNTER, D., LIU, B., SINGH, G., and LEUCHT, P. Effects of mechanical loading on cortical defect repair using a novel mechanobiological model of bone healing. Bone, 108, 145- 155 (2018) |
38 | SALTELLI, A., TARANTOLA, S., and CAMPOLONGO, F. Sensitivity analysis as an ingredient of modeling. Statistical Science, 15, 377- 395 (2000) |
39 | EFRON, B., and STEIN, C. The jackknife estimate of variance. Annals of Statistics, 9, 586- 596 (1981) |
40 | SALTELLI, A. Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications, 145 (2), 280- 297 (2002) |
41 | ARCHER, G. E. B., SALTELLI, A., and SOBOL, I. M. Sensitivity measures, anova-like techniques, and the use of bootstrap. Journal of Statistical Computation and Simulation, 58 (2), 99- 120 (1997) |
42 | SOBOL, I. M. Sensitivity analysis for non-linear mathematical models. Mathematical Modeling and Computational Experiment, 1, 407- 414 (1993) |
43 | JANON, A., KLEIN, T., LAGNOUX, A., NODET, M., and PRIEUR, C. Asymptotic normality and efficiency of two Sobol index estimators. ESAIM-Probability and Statistics, 18, 342- 364 (2014) |
44 | IOOSS, B., VAN, D. F., and DEVICTOR, N. Response surfaces and sensitivity analyses for an environmental model of dose calculations. Reliability Engineering and System Safety, 91 (10-11), 1241- 1251 (2006) |
45 | SALTELLI, A., ANNONI, P., AZZINI, I., CAMPOLONGO, F., RATTO, M., and TARANTOLA, S. Variance-based sensitivity analysis of model output: design and estimator for the total sensitivity index. Computer Physics Communications, 181 (2), 259- 270 (2010) |
46 | JANSEN, M. J. W. Analysis of variance designs for model output. Computer Physics Communications, 117 (1-2), 35- 43 (1999) |
47 | PUY, A., PIANO, S. L., SALTELLI, A., and LEVIN, S. A. Sensobol: an “R” package to compute variance-based sensitivity indices. Journal of Statistical Software, 102, 1- 37 (2021) |
48 | LIU, R., and OWEN, A. B. Estimating mean dimensionality of analysis of variance decompositions. Journal of the American Statistical Association, 101 (474), 712- 721 (2006) |
49 | JOHNSON, N. L., KOTZ, S. I., and BALAKRISHNAN, N. Beta Distributions, John Wiley and Sons, New York 221- 235 (1994) |
50 | DEHGHANI, H., PENTA, R., and MERODIO, J. The role of porosity and solid matrix compressibility on the mechanical behavior of poroelastic tissues. Materials Research Express, 6 (3), 035404 (2018) |
51 | BURRIDGE, R., and KELLER, J. B. Poroelasticity equations derived from microstructure. The Journal of the Acoustical Society of America, 70 (4), 1140- 1146 (1981) |
52 | LÉVY, T. Propagation of waves in a fluid-saturated porous elastic solid. International Journal of Engineering Science, 17 (9), 1005- 1014 (1979) |
53 | PENTA, R., MILLER, L., GRILLO, A., RAMÍREZ-TORRES, A., MASCHERONI, P., and RODRÍGUEZ-RAMOS, R. Porosity and diffusion in biological tissues: recent advances and further perspectives. Constitutive Modelling of Solid Continua, Springer, Berlin, 311–356 (2020) |
54 | MILLER, L., and PENTA, R. Effective balance equations for poroelastic composites. Continuum Mechanics and Thermodynamics, 32 (6), 1533- 1557 (2020) |
55 | MILLER, L., and PENTA, R. Double poroelasticity derived from the microstructure. Acta Mechanica, 232, 3801- 3823 (2021) |
56 | MILLER, L., and PENTA, R. Investigating the effects of microstructural changes induced by myocardial infarction on the elastic parameters of the heart. Biomechanics and Modelling in Mechanobiology, 22 (3), 1019- 1033 (2023) |
57 | MILLER, L., and PENTA, R. Micromechanical analysis of the effective stiffness of poroelastic composites. European Journal of Mechanics/A Solids, 98, 104875 (2023) |
58 | RODRIGUEZ, J., and MERODIO, J. A new derivation of the bifurcation conditions of inflated cylindrical membranes of elastic material under axial loading: application to aneurysm formation. Mechanics Research Communications, 38, 203- 210 (2010) |
59 | TOPOL, H., AL-CHLAIHAWI, M. J., DEMIRKOPARAN, H., and MERODIO, J. Bulging initiation and propagation in fiber-reinforced swellable mooney-rivlin membranes. Journal of Engineering Mathematics, 128, 1- 15 (2021) |
60 | TOPOL, H., AL-CHLAIHAWI, M. J., DEMIRKOPARAN, H., and MERODIO, J. Bifurcation of fiber-reinforced cylindrical membranes under extension, inflation, and swelling. Applied Computational Mechanics, 9, 113- 128 (2023) |
61 | SEDDIGHI, Y., and HAN, H. C. Buckling of arteries with noncircular cross sections: theory and finite element simulations. Frontiers of Physics, 12, 712636 (2021) |
62 | FU, Y. B., LIU, J. L., and FRANCISCO, G. S. Localized bulging in an inflated cylindrical tube of arbitrary thickness — the effect of bending stiffness. Journal of the Mechanics and Physics of Solids, 90, 45- 60 (2016) |
63 | JHA, N. K., MORADALIZADEH, S., REINOSO, J., TOPOL, H., and MERODIO, J. On the helical buckling of anisotropic tubes with application to arteries. Mechanics Research Communications, 128, 104067 (2023) |
64 | AMBROSI, D., BEN-AMAR, M., CYRON, C. J., DESIMONE, A., GORIELY, A., HUMPHREY, J. D., and KUHL, E. Growth and remodeling of living tissues: perspectives, challenges, and opportunities. Journal of the Royal Society Interface, 16, 20190233 (2019) |
65 | TOPOL, H., DEMIRKOPARAN, H., and PENCE, T. J. On collagen fiber morphoelasticity and homeostatic remodeling tone. Journal of the Mechanical Behavior of Biomedical Materials, 113, 104154 (2021) |
66 | TOPOL, H., DEMIRKOPARAN, H., and PENCE, T. J. Fibrillar collagen: a review of the mechanical modeling of strain-mediated enzymatic turnover. Applied Mechanics Reviews, 73, 050802 (2021) |
67 | SAINI, K., CHO, S., DOOLING, L. J., and DISCHER, D. E. Tension in fibrils suppresses their enzymatic degradation-a molecular mechanism for ‘use it or lose it’. Matrix Biology, 85-86, 34- 46 (2020) |
[1] | . [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 2037-2054. |
[2] | M. MADHU, N. S. SHASHIKUMAR, B. MAHANTHESH, B. J. GIREESHA, N. KISHAN. Heat transfer and entropy generation analysis of non-Newtonian fluid flow through vertical microchannel with convective boundary condition[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(9): 1285-1300. |
[3] | K. RAMESH, O. OJJELA. Entropy generation analysis of natural convective radiative second grade nanofluid flow between parallel plates in a porous medium[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(4): 481-498. |
[4] | K. R. RAGHUNATHA, I. S. SHIVAKUMARA. Stability of triple diffusive convection in a viscoelastic fluid-saturated porous layer[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(10): 1385-1410. |
[5] | M. A. SHEREMET, R. TRÎMBIŢAŞ, T. GROŞAN, I. POP. Natural convection of an alumina-water nanofluid inside an inclined wavy-walled cavity with a non-uniform heating using Tiwari and Das' nanofluid model[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(10): 1425-1436. |
[6] | P. K. YADAV, S. JAISWAL, B. D. SHARMA. Mathematical model of micropolar fluid in two-phase immiscible fluid flow through porous channel[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(7): 993-1006. |
[7] | K. R. RAGHUNATHA, I. S. SHIVAKUMARA, SOWBHAGYA. Stability of buoyancy-driven convection in an Oldroyd-B fluid-saturated anisotropic porous layer[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(5): 653-666. |
[8] | K. R. RAGHUNATHA, I. S. SHIVAKUMARA, B. M. SHANKAR. Weakly nonlinear stability analysis of triple diffusive convection in a Maxwell fluid saturated porous layer[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(2): 153-168. |
[9] | Jiaxuan LIU, Xinchun SHANG, Weiyao ZHU. Investigation on nonlinear multi-scale effects of unsteady flow in hydraulic fractured horizontal shale gas wells[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(2): 181-192. |
[10] | V. MISHRA, B. R. GUPTA. Motion of a permeable shell in a spherical container filled with non-Newtonian fluid[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(12): 1697-1708. |
[11] | Lüwen ZHOU, Yuqian ZHANG, Xiaolong DENG, Moubin LIU. Dissipative particle dynamics simulation of flow through periodic arrays of circular micropillar[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(11): 1431-1440. |
[12] | P. RANA, M. J. UDDIN, Y. GUPTA, A. I. M. ISMAIL. Two-component modeling for non-Newtonian nanofluid slip flow and heat transfer over sheet: Lie group approach[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(10): 1325-1340. |
[13] | R. KANDASAMY, R. MOHAMMAD, I. MUHAIMIN. Carbon nanotubes on unsteady MHD non-Darcy flow over porous wedge in presence of thermal radiation energy[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(8): 1031-1040. |
[14] | Yizhao WAN, Yuewu LIU, Weiping OUYANG, Guofeng HAN, Wenchao LIU. Numerical investigation of dual-porosity model with transient transfer function based on discrete-fracture model[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(5): 611-626. |
[15] | Xi CHEN, Ying DAI. Differential transform method for solving Richards' equation[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(2): 169-180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||