Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (1): 157-176.doi: https://doi.org/10.1007/s10483-025-3207-6
Previous Articles Next Articles
Wei CHEN1, Zhihong TANG1, Yufen LIAO1, Linxin PENG2,3,†()
Received:
2024-06-15
Revised:
2024-11-18
Online:
2025-01-03
Published:
2025-01-06
Contact:
Linxin PENG
E-mail:penglx@gxu.edu.cn
Supported by:
2010 MSC Number:
Wei CHEN, Zhihong TANG, Yufen LIAO, Linxin PENG. A six-variable quasi-3D isogeometric approach for free vibration of functionally graded graphene origami-enabled auxeticmetamaterial plates submerged in a fluid medium. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 157-176.
Table 1
Convergence study on dimensionless fundamental frequencies of SSSS isotropic plates horizontally submerged in the fluid, where a=1, a/b=1, and a/h=5"
Method | Mesh | Control point | In a vacuum | Fluid level | ||||
---|---|---|---|---|---|---|---|---|
0.0 | 0.3 | 0.5 | 1.0 | 2.0 | ||||
Quadratic-IGA | 49 | 1.779 5 | 1.589 1 | 1.464 8 | 1.451 4 | 1.448 6 | 1.448 6 | |
121 | 1.771 4 | 1.581 9 | 1.458 1 | 1.444 8 | 1.442 0 | 1.441 9 | ||
225 | 1.769 3 | 1.580 0 | 1.456 4 | 1.443 1 | 1.440 3 | 1.440 2 | ||
361 | 1.768 5 | 1.579 3 | 1.455 7 | 1.442 4 | 1.439 6 | 1.439 6 | ||
Cubic-IGA | 64 | 1.767 3 | 1.578 2 | 1.454 7 | 1.441 4 | 1.438 6 | 1.438 6 | |
144 | 1.767 2 | 1.578 1 | 1.454 6 | 1.441 3 | 1.438 5 | 1.438 5 | ||
256 | 1.767 2 | 1.578 1 | 1.454 6 | 1.441 3 | 1.438 5 | 1.438 5 | ||
400 | 1.767 2 | 1.578 1 | 1.454 6 | 1.441 3 | 1.438 5 | 1.438 5 | ||
Quartic-IGA | 81 | 1.767 2 | 1.578 1 | 1.454 6 | 1.441 3 | 1.438 5 | 1.438 5 | |
169 | 1.767 2 | 1.578 1 | 1.454 6 | 1.441 3 | 1.438 5 | 1.438 5 | ||
289 | 1.767 2 | 1.578 1 | 1.454 6 | 1.441 3 | 1.438 5 | 1.438 5 | ||
441 | 1.767 2 | 1.578 1 | 1.454 6 | 1.441 3 | 1.438 5 | 1.438 5 | ||
Pham et al.[ | – | – | 1.778 5 | 1.578 1 | 1.449 5 | 1.435 8 | 1.432 9 | 1.432 9 |
Table 2
Validation analysis on the dimensionless fundamental frequencies of SSSS isotropic plates vertically submerged in the fluid with various length-to-thickness ratios, where a=1, a/b=1, and d1=d2"
Method | In a vacuum | Immersed depth ( | |||||
---|---|---|---|---|---|---|---|
0.1 | 0.3 | 0.5 | 0.7 | 1 | |||
5 | Pham et al.[ | 1.778 5 | 1.714 6 | 1.610 5 | 1.535 4 | 1.482 9 | 1.432 9 |
Present | 1.767 2 | 1.707 3 | 1.609 0 | 1.537 2 | 1.486 8 | 1.438 5 | |
10 | Pham et al.[ | 1.937 0 | 1.796 9 | 1.598 8 | 1.473 5 | 1.393 0 | 1.320 7 |
Present | 1.933 7 | 1.795 9 | 1.600 2 | 1.476 0 | 1.396 0 | 1.324 1 | |
100 | Pham et al.[ | 2.002 1 | 1.226 1 | 0.830 4 | 0.687 1 | 0.614 8 | 0.558 7 |
Present | 1.999 7 | 1.224 6 | 0.829 5 | 0.686 3 | 0.614 1 | 0.558 0 |
Table 3
Validation analysis on the first six dimensionless frequencies of CCCC FG-GPLRC plates with various GPL distribution patterns, where a=1, a/b=1, and a/h=10"
GPL pattern | Theory | Mode | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
UD | HSDT[ | 0.207 8 | 0.397 2 | 0.397 2 | 0.557 7 | 0.657 9 | 0.663 6 |
Quasi-3D[ | 0.231 4 | 0.433 9 | 0.433 9 | 0.602 2 | 0.708 3 | 0.711 5 | |
0.206 7 | 0.394 2 | 0.397 4 | 0.555 9 | 0.654 1 | 0.663 3 | ||
Present | 0.213 5 | 0.404 0 | 0.406 2 | 0.564 6 | 0.660 1 | 0.673 9 | |
FG-O | HSDT[ | 0.178 8 | 0.347 7 | 0.347 7 | 0.493 5 | 0.586 7 | 0.591 2 |
Quasi-3D[ | 0.196 7 | 0.376 5 | 0.376 5 | 0.531 4 | 0.630 6 | 0.632 6 | |
0.178 0 | 0.345 7 | 0.348 5 | 0.493 0 | 0.584 6 | 0.592 6 | ||
Present | 0.184 0 | 0.355 8 | 0.356 9 | 0.503 4 | 0.595 9 | 0.604 3 | |
FG-X | HSDT[ | 0.226 5 | 0.423 0 | 0.423 0 | 0.586 3 | 0.685 3 | 0.691 7 |
Quasi-3D[ | 0.259 7 | 0.478 6 | 0.478 6 | 0.652 9 | 0.760 3 | 0.764 8 | |
0.224 7 | 0.418 4 | 0.421 7 | 0.582 4 | 0.678 7 | 0.688 4 | ||
Present | 0.231 9 | 0.427 0 | 0.430 6 | 0.588 6 | 0.678 2 | 0.697 8 | |
FG-A | HSDT[ | 0.192 8 | 0.370 5 | 0.370 5 | 0.521 9 | 0.617 2 | 0.622 5 |
Quasi-3D[ | 0.216 0 | 0.407 9 | 0.407 9 | 0.569 0 | 0.670 8 | 0.674 2 | |
0.191 9 | 0.368 2 | 0.371 3 | 0.521 1 | 0.614 8 | 0.623 4 | ||
Present | 0.201 0 | 0.382 7 | 0.384 5 | 0.536 6 | 0.629 4 | 0.641 4 |
[1] | KOIZUMI, M. FGM activities in Japan. Composites Part B: Engineering, 28(1-2), 1–4 (1997) |
[2] | EL-GALY, I. M., SALEH, B. I., and AHMED, M. H. Functionally graded materials classifications and development trends from industrial point of view. SN Applied Sciences, 1, 1378 (2019) |
[3] | KUMAR, P., SHARMA, S. K., and SINGH, R. K. R. Recent trends and future outlooks in manufacturing methods and applications of FGM: a comprehensive review. Materials and Manufacturing Processes, 38(9), 1033–1067 (2023) |
[4] | LUO, C., HAN, C. Z., ZHANG, X. Y., ZHANG, X. G., REN, X., and XIE, Y. M. Design, manufacturing and applications of auxetic tubular structures: a review. Thin-Walled Structures, 163, 107682 (2021) |
[5] | SCHENK, M. and GUEST, S. D. Geometry of Miura-folded metamaterials. Proceedings of the National Academy of Sciences, 110(9), 3276–3281 (2013) |
[6] | HO, D. T., KIM, S. Y., and SCHWINGENSCHLÖGL, U. Graphene origami structures with superflexibility and highly tunable auxeticity. Physical Review B, 102(17), 174106 (2020) |
[7] | ZHAO, S. Y., ZHANG, Y. Y., ZHANG, Y. H., YANG, J., and KITIPORNCHAI, S. Graphene origami-enabled auxetic metallic metamaterials: an atomistic insight. International Journal of Mechanical Sciences, 212, 106814 (2021) |
[8] | ZHAO, S. Y., ZHANG, Y. Y., ZHANG, Y. H., ZHANG, W., YANG, J., and KITIPORNCHAI, S. Genetic programming-assisted micromechanical models of graphene origami-enabled metal metamaterials. Acta Materialia, 228, 117791 (2022) |
[9] | ZHAO, S. Y., ZHANG, Y. Y., ZHANG, Y. H., YANG, J., and KITIPORNCHAI, S. A functionally graded auxetic metamaterial beam with tunable nonlinear free vibration characteristics via graphene origami. Thin-Walled Structures, 181, 109997 (2022) |
[10] | ZHAO, S. Y., ZHANG, Y. Y., WU, H. L., ZHANG, Y. H., and YANG, J. Functionally graded graphene origami-enabled auxetic metamaterial beams with tunable buckling and postbuckling resistance. Engineering Structures, 268, 114763 (2022) |
[11] | AN, J. F., WANG, A. W., ZHANG, K. R., ZHANG, W., SONG, L. N., XIAO, B., and WANG, R. C. Bending and buckling analysis of functionally graded graphene origami metamaterial irregular plates using generalized finite difference method. Results in Physics, 53, 106945 (2023) |
[12] | ZHANG, E. C., CHEN, Y., and NASR, E. A. Dynamic responses of functionally graded origami-enabled auxetic metamaterial sector plate induced by mechanical shock: application of innovative machine learning algorithm. Mechanics of Advanced Materials and Structures, 9387–9409 (2023) |
[13] | CHEN, F. H., QIU, X. G., and ALNOWIBET, K. A. Size-dependent nonlinear vibrations of functionally graded origami-enabled auxetic metamaterial plate: application of artificial intelligence networks for solving the engineering problem. Materials Today Communications, 38, 108232 (2024) |
[14] | LV, Y., ZHANG, J., WU, J. Y., and LI, L. H. Mechanical and thermal postbuckling of functionally graded graphene origami-enabled auxetic metamaterials plates. Engineering Structures, 298, 117043 (2024) |
[15] | HOSSEINI-HASHEMI, S., KARIMI, M., and ROKNI, H. Natural frequencies of rectangular Mindlin plates coupled with stationary fluid. Applied Mathematical Modelling, 36(2), 764–778 (2012) |
[16] | LI, H. C., KE, L. L., YANG, J., and KITIPORNCHAI, S. Size-dependent free vibration of microbeams submerged in fluid. International Journal of Structural Stability and Dynamics, 20(12), 2050131 (2020) |
[17] | SHAHBAZTABAR, A. and RAHBAR-RANJI, A. Free vibration analysis of symmetrically laminated composite plates on elastic foundation and coupled with stationary fluid. China Ocean Engineering, 32, 266–277 (2018) |
[18] | SONI, S., JAIN, N. K., and JOSHI, P. V. Analytical modeling for nonlinear vibration analysis of partially cracked thin magneto-electro-elastic plate coupled with fluid. Nonlinear Dynamics, 90, 137–170 (2017) |
[19] | LI, H. C., KE, L. L., WU, Z. M., and YANG, J. Free vibration of FGM Mindlin plates submerged in fluid. Engineering Structures, 259, 114144 (2022) |
[20] | LI, H. C., ZHU, L. F., WU, Z. M., and KE, L. L. Free vibration of size-dependent FGM Mindlin microplates in viscous fluid. Waves in Random and Complex Media (2023) https://doi.org/10.1080/17455030.2023.2168088 |
[21] | FARSANI, S. R., SAADAT, Z., JAFARI-TALOOKOLAEI, R., TIKANI, R., and ZIAEI-RAD, S. Free vibrational analysis of variable thickness plate made of functionally graded porous materials using internal supports in contact with bounded fluid. Ocean Engineering, 263, 112335 (2022) |
[22] | LI, H. C., KE, L. L., YANG, J., KITIPORNCHAI, S., and WANG, Y. S. Free vibration of variable thickness FGM beam submerged in fluid. Composite Structures, 233, 111582 (2020) |
[23] | LI, H. C. and KE, L. L. Size-dependent vibration and dynamic stability of AFG microbeams immersed in fluid. Thin-Walled Structures, 161, 107432 (2021) |
[24] | LI, H. C., MAO, J. J., HU, H., and KE, L. L. Free vibration of cracked FGM Mindlin plate in fluid. Composite Structures, 336, 118013 (2024) |
[25] | PHAM, Q., NGUYEN, P., TRAN, V. K., and NGUYEN-THOI, T. Isogeometric analysis for free vibration of bidirectional functionally graded plates in the fluid medium. Defence Technology, 18(8), 1311–1329 (2022) |
[26] | PHAM, Q., TRAN, V. K., and NGUYEN, P. Exact solution for thermal vibration of multi-directional functionally graded porous plates submerged in fluid medium. Defence Technology, 35, 77–99 (2023) |
[27] | HOANG, V. N. V. and THANH, P. T. A new trigonometric shear deformation theory for free vibration of graphene reinforced metal-matrix nanocomposite plate submerged in fluid medium. Thin-Walled Structures, 184, 110472 (2023) |
[28] | MURARI, B., ZHAO, S. Y., ZHANG, Y. H., KE, L. L., and YANG, J. Vibrational characteristics of functionally graded graphene origami-enabled auxetic metamaterial beams with variable thickness in fluid. Engineering Structures, 277, 115440 (2023) |
[29] | KIRCHHOFF, G. Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal für die reine und Angewandte Mathematik (Crelles Journal), 40, 51–88 (1850) |
[30] | REISSNER, E. The effect of transverse shear deformation on the bending of elastic plates. Journal of Applied Mechanics, 12, 69–77 (1945) |
[31] | AMBARTSUMIAN, S. A. On the theory of bending of anisotropic plates and shallow shells. Journal of Applied Mathematics and Mechanics, 24(2), 500–514 (1960) |
[32] | ZENKOUR, A. M. Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate. Archive of Applied Mechanics, 77(4), 197–214 (2007) |
[33] | NGUYEN, T. N., THAI, C. H., and NGUYEN-XUAN, H. On the general framework of high order shear deformation theories for laminated composite plate structures: a novel unified approach. International Journal of Mechanical Sciences, 110, 242–255 (2016) |
[34] | HUGHES, T. J., COTTRELL, J. A., and BAZILEVS, Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194, 4135–4195 (2005) |
[35] | SENGAR, V., WATTS, G., KUMAR, R., PATEL, S. N., and KUMAR, A. Tunable thermal postbuckling response of imperfect skew sandwich plates with auxetic core and FGCNTRC facings using isogeometric approach. Engineering Structures, 305, 117706 (2024) |
[36] | MOHAMMADI, H., SETOODEH, A. R., and VASSILOPOULOS, A. P. Isogeometric Kirchhoff-Love shell patches in free and forced vibration of sinusoidally corrugated FG carbon nanotube-reinforced composite panels. Thin-Walled Structures, 171, 108707 (2022) |
[37] | GUPTA, V., JAMEEL, A., VERMA, S. K., ANAND, S., and ANAND, Y. An insight on NURBS based isogeometric analysis, its current status and involvement in mechanical applications. Archives of Computational Methods in Engineering, 30(2), 1187–1230 (2023) |
[38] | YANG, J., WU, H. L., and KITIPORNCHAI, S. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Composite Structures, 161, 111–118 (2017) |
[39] | NGUYEN, H. X., NGUYEN, T. N., ABDEL-WAHAB, M., BORDAS, S. P., NGUYEN-XUAN, H., and VO, T. P. A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Computer Methods in Applied Mechanics and Engineering, 313, 904–940 (2017) |
[40] | AURICCHIO, F., DA VEIGA, L. B., BUFFA, A., LOVADINA, C., REALI, A., and SANGALLI, G. A fully “locking-free” isogeometric approach for plane linear elasticity problems: a stream function formulation. Computer Methods in Applied Mechanics and Engineering, 197, 160–172 (2007) |
[41] | MANTARI, J. L. and SOARES, C. G. Five-unknowns generalized hybrid-type quasi-3D HSDT for advanced composite plates. Applied Mathematical Modelling, 39(18), 5598–5615 (2015) |
[42] | THAI, C. H., FERREIRA, A., and PHUNG-VAN, P. Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory. Composites Part B: Engineering, 169, 174–188 (2019) |
[43] | THAI, C. H., FERREIRA, A., TRAN, T. D., and PHUNG-VAN, P. A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory. Composite Structures, 234, 111695 (2020) |
[44] | THAI, C. H. and PHUNG-VAN, P. A meshfree approach using naturally stabilized nodal integration for multilayer FG GPLRC complicated plate structures. Engineering Analysis with Boundary Elements, 117, 346–358 (2020) |
[45] | ZHAO, S. Y., ZHANG, Y. Y., ZHANG, Y. H., YANG, J., and KITIPORNCHAI, S. Vibrational characteristics of functionally graded graphene origami-enabled auxetic metamaterial beams based on machine learning assisted models. Aerospace Science and Technology, 130, 107906 (2022) |
[46] | SONI, S., JAIN, N. K., and JOSHI, P. V. Vibration analysis of partially cracked plate submerged in fluid. Journal of Sound and Vibration, 412, 28–57 (2018) |
[1] | Jie CHEN, Xinyue ZHANG, Mingyang FAN. Dynamic behaviors of graphene platelets-reinforced metal foam piezoelectric beams with velocity feedback control [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 63-80. |
[2] | Xiaoyang SU, Tong HU, Wei ZHANG, Houjun KANG, Yunyue CONG, Quan YUAN. Transfer matrix method for free and forced vibrations of multi-level functionally graded material stepped beams with different boundary conditions [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 983-1000. |
[3] | S. JAHANGIRI, A. GHORBANPOUR ARANI, Z. KHODDAMI MARAGHI. Dynamics of a rotating ring-stiffened sandwich conical shell with an auxetic honeycomb core [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 963-982. |
[4] | Yu TAN, Fan PENG, Chang LIU, Daiming PENG, Xiangyu LI. Fourth-order phase-field modeling for brittle fracture in piezoelectric materials [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 837-856. |
[5] | H.M. FEIZABAD, M.H. YAS. Free vibration and buckling analysis of polymeric composite beams reinforced by functionally graded bamboo fibers [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 543-562. |
[6] | Xiaodong GUO, Zhu SU, Lifeng WANG. Dynamic characteristics of multi-span spinning beams with elastic constraints under an axial compressive force [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 295-310. |
[7] | Zhi LI, Cuiying FAN, Mingkai GUO, Guoshuai QIN, Chunsheng LU, Dongying LIU, Minghao ZHAO. Natural frequency analysis of laminated piezoelectric beams with arbitrary polarization directions [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1949-1964. |
[8] | Xueqian FANG, Qilin HE, Hongwei MA, Changsong ZHU. Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1351-1366. |
[9] | U. N. ARIBAS, M. AYDIN, M. ATALAY, M. H. OMURTAG. Cross-sectional warping and precision of the first-order shear deformation theory for vibrations of transversely functionally graded curved beams [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2109-2138. |
[10] | Changsong ZHU, Xueqian FANG, Jinxi LIU. Nonlinear free vibration of piezoelectric semiconductor doubly-curved shells based on nonlinear drift-diffusion model [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1761-1776. |
[11] | Lingkang ZHAO, Peijun WEI, Yueqiu LI. Free vibration of thermo-elastic microplate based on spatiotemporal fractional-order derivatives with nonlocal characteristic length and time [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 109-124. |
[12] | Qingdong CHAI, Yanqing WANG, Meiwen TENG. Nonlinear free vibration of spinning cylindrical shells with arbitrary boundary conditions [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(8): 1203-1218. |
[13] | M. H. YAS, F. AKHLAGHI, S. KAMARIAN, A. H. YAS. Static and free vibration analysis of four-parameter continuous grading elliptical sandwich plates [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 523-536. |
[14] | M. KOHANSAL-VAJARGAH, R. ANSARI, M. FARAJI-OSKOUIE, M. BAZDID-VAHDATI. Vibration analysis of two-dimensional structures using micropolar elements [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 999-1012. |
[15] | Shaowu YANG, Yuxin HAO, Wei ZHANG, Li YANG, Lingtao LIU. Nonlinear vibration of functionally graded graphene plateletreinforced composite truncated conical shell using first-order shear deformation theory [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 981-998. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||