[1] S. Amni, C. T. H. Baker, P. J. van der Houwen and P. H. M. Walkenfelt, Stability analysis of numerical methods for Volterra integral equations with polynomial convolution kernels, J. Integral Equation, 5 (1983), 73-93.
[2] C.T.H. Baker and M. S. Keech, Stability region in the numerical treatment of Volterra integral equations, SIAM J. Numer. Anal., 15 (1978), 349-417.
[3] R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York, San Francisco, London (1953).
[4] J. M. Bownds, J. M. Cushing and R. Schutte, Existence, uniqueness and extendility of solutions of Volterra integral system with multiple variable lags, Funkcial. Ekvac., 19(1976), 101-111.
[5] B. Cahlon, J. Nachman and D. Schmidt, Numerical solution of Volterra integral equations with delay arguments, J. Integral Equations, 7 (1984)', 191-208.
[6] B. Cahlon, On the numerical stability of Volterra integral equations with delay argument,J. C. A. M., 33 (1990), 97-104.
[7] G. Dahlquist, A special stability problem for linear multistep methods, BTT, 8 (1963),27-43.
[8] T. Grand, Numerical methods for integration of delay differential equations, Thesis.Dpto. Mat. Apl. Univ. Zeragoza (1986).
[9] K. J. intt Hout, A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations, Reporthr. TW-90-09, Dept. Math. and Comput. Sc. Univ.of Leiden (1990).
[10] K. J. intt Hout and M. N. Spijker, The 0-methods in the numerical solhtion of delay differential equations, Rep. TW-89-03, Univ. Leiden (1989).
[11] Z. Jackiewicz, Asymptotic stability analysis of θ-methods fro: functional differential equations, Numer. Math., 48 (1984), 389--396.
[12] J. D. Lambert; Computational Methods in Ordinary Differential Equations, Wiley, New York (1973).
[13] Lu Lian-hua, Numerical Stability of the θ-methods for systems of differential equations with sereval delay terms, or. C. A. M., 34 (1991), 291-304.
[14] M. Marsden, Geomen T of Polynomials, Amer. Mathematical Soci., Providence, RI (1966).
[15] D. Morugim. Impulsive Structures with Delayed Feedback, Moscow (1961). (in Russian)
[16] D. Morugim, Resistence of impact with retarded inverse connections, Sovetskoe Radio(1961). (in Russian)
[17] M. G. Roth, Difference methods for stiff delay differential equations, Thesis, Dept.Comput. Sci., Univ. Illinois at Urbana-Champaign, Urbana, IL (1980).
[18] Tian Hong-jiong and Kuang Jiao-xun, The stability of the θ-methods in the numerical solution of delay differential equations with several delay terms, J. C. A. M. (1994).
[19] P. H. M. Walkenfelt, The construction of reducible quadrature rules for Volterra integral and integral-differential equations, IMA J. Numer. Anal.,2 (1982), 131-152 |