TANG Jia-shi. THE MLP METHOD FOR SUBHARMONIC AND ULTRA-HARMONIC RESONANCE SOLUTIONS OF STRONGLY NONLINEAR SYSTEMS. Applied Mathematics and Mechanics (English Edition), 2000, 21(10): 1153-1160.
[1] XU Zhao.A new asymptotic method in nonlinear mechanics[J].Acta Mechanica Sinica,1985,17(3):266~271.(in Chinese) [2] Cheung Y K,Chen S H,Lau S L.A modified Lindstedt-Poincar method for certain strongly nonlinear oscillators[J].Int J Non-Linear Mechanics,1991,26(3,4):367~378. [3] LI Li.Stroboscopic method for strongly nonlinear system[J].Acta Mechanica Sinica,1990,22(4):367~379.(in Chinese) [4] Jones S E.Remarks on the perturbation process f or certain conservative systems[J].Int J NonLinear Mechanics,1978,13(1):125~136. [5] Chen S H,Cheung Y K.A modified Lindstedt-Poincar method for a strongly non-linear two degreeof freedom system[J].Journal of Sound and Vibration,1996,193(4):751~762. [6] Chen S H,Cheung Y K.A modified Lindstedt-Poincar method f or a strongly nonlinear system withquadratic and cubic nonlinearities[J].Shock and Vibration,1996,3(4):279~285.