[1] Bogoliubov N N,Mitropolsky Y A.A Symptotic Method in the Theory of Nonlinear Oscillation[M].New York:Gordon and Breach,1961. [2] Nayfeh A H,M ook D T.Nonlinear Oscillations[M].New York:John Wiley and Sons,1979. [3] CHEN Yu-shu,Langford W F.The subharmonic bif urcation solution of nonlinear Mathieu’s equation and Euler dynamic buckling problems[J].Acta Mech Sinica,1998,4(4):350-362. [4] CHEN Yu-shu,MEI Lin-tao.Bif urcation solution of resonant cases of nonlinear Mathieu’s equations[J].Science in China A,1990,23(12):1467-1476. [5] CHEN Yu-shu,XU Jian.Universal classification of bifurcation solutions to primary parametric resonance in Van der Pol-Duffing-Mathieu!s systems[J].Science in China A,1995,25(12):1287-1297. [6] CHEN Yu-shu,Andrew Y T Leung.Bifurcation and Chaos in Engin eering[M].London:Springer-Verlag,1998. [7] Golubitsky M,Schaeffer D G.Singularities and Groups in Bifurcation Theory Vol.Ⅰ[M].New York:Springer-Verlag,1985. [8] WEN Ban-chun,GU Jia-liu,XIA Song-po,et al.Advanced Rotor Dynamics[M].Beijing:Machine Industry Press,2000. [9] Langford W F,Zhan K.Dynamics of strong 1:1 resonance in Vortex-induced vibration[A].In:Paidoussis M P,Akylas T,Abraham P B Ed.Fundamental Aspects of Fluid-Structure Interactions[C].PVP-Vol.247,1992. [10] YANG Cai-xia.Hopf Bifurcation and singularity analysis of high codimension for highly dimensional and unsymmetrical nonlinear dynamical systems of 1:2 internal resonance[D].Tianjin:Tianjin University,2000. [11] Leblanc V G,Langford W F.Classification and unfoldings of 1:2 resonant Hopf bifurcation[J].Arch Rational Mech Anal,1996,136(4):305-357. [12] CHEN Fan-qi.Some nonlinear problems[R].Post-Doctoral Report of Tianjin University,2000. |