[1] Harris, A. L. Hypoxia: a key regulatory factor in tumour growth. Nature Reviews Cancer, 2, 38-47 (2002)
[2] Helmlinger, G., Yuan, F., Dellian, M., and Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Medicine, 3, 177-182 (1997)
[3] Tatum, J. L., Kelloff, G. J., Gillies, R. J., Arbeit, J. M., Brown, J. M., Chao, K. S., Chapman, J. D., Eckelman, W. C., Fyles, A. W., Giaccia, A. J., Hill, R. P., Koch, C. J., Krishna, M. C., Krohn, K. A., Lewis, J. S., Mason, R. P., Melillo, G., Padhani, A. R., Powis, G., Rajendran, J. G., Reba, R., Robinson, S. P., Semenza, G. L., Swartz, H. M., Vaupel, P., Yang, D., Croft, B., Hoffman, J., Liu, G., Stone, H., and Sullivan, D. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. International Journal of Radiation Biology, 82(10), 699-757 (2006)
[4] Krogh, A. The Anantomy and Physiology of Capillaries, Yale University Press, New York (1992)
[5] Fukumura, D. Role of microenvironment on gene expression, angiogenesis and microvascular functions in tumors. Integration/Interaction of Oncologic Growth (ed., Meadows, G. G.), Springer Netherlands, Dordrecht, 23-36 (2005)
[6] Jain, R. K., Tong, R. T., and Munn, L. L. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Research, 67, 2729-2735 (2007)
[7] Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science, 307(5706), 58-62 (2005)
[8] Mekheimer, K. S. and Kot, M. A. E. Influence of magnetic field and Hall currents on blood flow through a stenotic artery. Applied Mathematics and Mechanics (English Edition), 29(8), 1093- 1104 (2008) DOI 10.1007/s10483-008-0813-x
[9] Mekheimer, K. S. and Kot, M. A. E. Suspension model for blood flow through arterial catheterization. Chemical Engineering Communications, 197(9), 1195-1214 (2010)
[10] Mekheimer, K. S. and Kot, M. A. E. Mathematical modelling of unsteady flow of a Sisko fluid through an anisotropically tapered elastic arteries with time-variant overlapping stenosis. Applied Mathematical Modelling, 36(11), 5393-5407 (2012)
[11] Anderson, A. R. A. A hybrid mathematical model of solid tumor invasion: the importance of cell adhesion. Mathematical Medicine and Biology, 22, 163-186 (2005)
[12] Cai, Y., Wu, J., Xu, S. X., and Li, Z. Y. A hybrid cellular automata model of multicellular tumour spheroid growth in hypoxic microenvironment. Journal of Applied Mathematics, 2013, 519895 (2013)
[13] Lü, J., Xu, S. X., Yao, W., Zhou, Y., and Long, Q. A hybrid discrete-continuum model of tumor growth considering capillary points. Applied Mathematics and Mechanics (English Edition), 34(10), 1237-1246 (2013) DOI 10.1007/s10483-013-1741-8
[14] Cai, Y., Xu, S. X., Wu, J., and Long, Q. Coupled modelling of tumor angiogenesis, tumour growth and blood perfusion. Journal of Theoretical Biology, 279, 90-101 (2011)
[15] McDonald, D. M. and Choyke, P. L. Imaging of angiogenesis: from microscope to clinic. Nature Medicine, 9, 713-725 (2003)
[16] Di Tomaso, E., Capen, D., Haskell, A., Hart, J., Logie, J. J., Jain, R. K., McDonald, D. M., Jones, R., and Munn, L. L. Mosaic tumor vessels: cellular basis and ultrastructure of focal regions lacking endothelial cell markers. Cancer Research, 65, 5740-5749 (2005)
[17] Liu, Z. F., Sun, Y. Y., and Kong, Y. W. The microvessel density and expressions of α2 smooth muscle actin in ovarian cancers and their clinical significance (in Chinese). Progress in Obstetrics and Gynecology, 12(5), 373-375 (2003)
[18] Stéphanou, A., McDougall, S. R., Anderson, A. R. A., and Chaplain, M. A. J. Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Mathematical and Computer Modelling, 41, 1137-1156 (2005)
[19] Wu, J., Xu, S. X., Long, Q., Padhani, A. R., and Jiang, Y. Simulation of 3D solid tumor angiogenesis including arteriole, capillary and venule. Molecular & Cellular Biomechanics, 5(4), 1-23 (2008)
[20] Wu, J., Cai, Y., Xu, S. X., Long, Q., Ding, Z. R., and Dong, C. 3D numerical study of tumor microenvironmental flow in response to vascular-disrupting treatments. Molecular & Cellular Biomechanics, 9(2), 95-125 (2012)
[21] Wu, J., Xu, S. X., Long, Q., Collins, M. W., König, C. S., Zhao, G., Jiang, Y., and Padhani, A. R. Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature. Journal of Biomechanics, 41, 996-1004 (2008)
[22] Wu, J., Long, Q., Xu, S. X., and Padhani, A. R. Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature. Journal of Biomechanics, 42, 712-721 (2009)
[23] Pries, A. R. and Secomb, T. W. Microvascular blood viscosity in vivo and the endothelial surface layer. American Journal of Physiology — Heart and Circulatory Physiology, 289, 2657-2664 (2005)
[24] Fung, Y. C. Blood rheology in microvessels. Biomechanics-Mechanical Properties of Living Tissues (ed., He, X. X.), Hunan Science Technique Publisher, Changsha, 157-197 (1986)
[25] Alarcon, T., Byrneb, H. M., and Mainia, P. K. A cellular automaton model for tumor growth in inhomogeneous environment. Journal of Theoretical Biology, 225, 257-274 (2003)
[26] Netti, P. A., Roberge, S., Boucher, Y., Baxter, L. T., and Jain, R. K. Effect of transvascular fluid exchange on pressure-flow relationship in tumors: a proposed mechanism for tumor blood flow heterogeneity. Microvascular Research, 52, 27-46 (1996)
[27] Jain, R. K. Determinants of tumor blood flow: a review. Cancer Research, 48, 2461-2658 (1988)
[28] Fukumura, D. and Jain, R. K. Tumor microvasculature and microenvironment: targets for antiangiogenesis and normalization. Microvascular Research, 74, 72-84 (2007)
[29] Erler, J. T., Bennewith, K. L., Nicolau, M., Dornhöfer, N., Kong, C., Le, Q. T., Chi, J. T., Jeffrey, S. S., and Giaccia, A. J. Lysyl oxidase is essential for hypoxia-induced metastasis. nature, 440, 1222-1226 (2006)
[30] Pennacchietti, S., Michieli, P., Galluzzo, M., Mazzone, M., Giordano, S., and Comoglio, P. M. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 3, 347-361 (2003)
[31] Rofstad, E. K., Mathiesen, B., Kindem, K., and Galappathi, K. Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Research, 66, 6699-6707 (2006)
[32] Brown, J. M. The hypoxic cell: a target for selective cancer therapy — eighteenth Bruce F. Cain memorial award lecture. Cancer Research, 59, 5863-5870 (1999)
[33] Chen, L. The biological features and clinical significance of tumour vascularization. Chinese Journal of Clinical and Experimental Pathology, 13(1), 62-64 (1997) |