[1] GUMMEL, H. K. A self-consistent iterative scheme for one-dimensional steady-state transistor calculation. IEEE Trans Electron Devices, 11(10), 455-465(1964) [2] DOUGLAS, J., JR. and YUAN, Y. R. Finite difference methods for the transient behavior of a semiconductor device. Computational Applied Mathematics, 6(1), 25-38(1987) [3] YUAN, Y. R. Characteristic finite element method and analysis for numerical simulation of a semiconductor device (in Chinese). Acta Mathematica Scientia, 13(3), 241-251(1993) [4] ZLÁMAL, M. A. Finite element solution of the fundamental equations of semiconductor devices I. Mathematics of Computation, 46(1), 27-43(1986) [5] YUAN, Y. R. A mixed finite element method for the transient behavior of a semiconductor devices. Applied Mathematics-A Journal of Chinese Universities, 7(3), 452-463(1992) [6] YUAN, Y. R. Finite difference method and analysis for three-dimensional semiconductor device of heat conduction. Science in China (Series A), 39(11), 1140-1151(1996) [7] YANG, Q. Upwind finite volume schemes for semiconductor device. Numerical Mathematics-A Journal of Chinese Universities (English Series), 12(2), 150-161(2003) [8] YANG, Q. and YUAN, Y. R. An approximation of semiconductor device by mixed finite element method and characteristics-mixed finite element method. Applied Mathematics and Computation, 225, 407-424(2013) [9] XU, J. C. A novel two-grid method for semilinear equations. SIAM Journal on Scientific Computing, 15(1), 231-237(1994) [10] DAWSON, C. N., WHEELER, M. F., and WOODWARD, C. S. A two-grid finite difference scheme for nonlinear parabolic equations. SIAM Journal on Numerical Analysis, 35(2), 435-452(1998) [11] CHEN, Y. P., HUANG, Y. Q., and YU, D. H. A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations. International Journal for Numerical Methods in Engineering, 57(2), 193-209(2003) [12] CHEN, Y. P., LIU, H. W., and LIU, S. Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods. International Journal for Numerical Methods in Engineering, 69(2), 408-422(2007) [13] HE, Y. N. Two-level method based on finite element and crank-nicolson extrapolation for the time-depent navier-stokes equations. SIAM Journal on Numerical Analysis, 41(4), 1263-1285(2003) [14] CAI, M. C., MU, M., and XU, J. C. Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM Journal on Numerical Analysis, 47(5), 3325-3338(2009) [15] CAI, M. C., HUANG, P. Q., and MU, M. Some multilevel decoupled algorithms for a mixed Navier-Stokes/Darcy model. Advances in Computational Mathematics, 44(1), 115-145(2018) [16] XU, J. C. and ZHOU, A. H. A two-grid discretization scheme for eigenvalue problems. Mathematics of Computation, 70(233), 17-25(2001) [17] ZHONG, L. Q., LIU, C. M., and SHU, S. Two-level additive preconditioners for edge element discretizations of time-harmonic maxwell equations. Computers and Mathematics with Applications, 66(4), 432-440(2013) [18] HUANG, P. Q., CAI, M. C., and WANG, F. A Newton type linearization based two grid method for coupling fluid flow with porous media flow. Applied Numerical Mathematics, 106, 182-198(2016) [19] WANG, Y., CHEN, Y. P., HUANG, Y. Q., and LIU, Y. Two-grid methods for semi-linear elliptic interface problems by immersed finite element methods. Applied Mathematics and Mechanics (English Edition), 40(11), 1657-1676(2019) https://doi.org/10.1007/s10483-019-2538-7 [20] BREZZI, F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Revue Française d'Automatique Informatique Recherche Opérationnelle Série Rouge, 8(R-2), 129-151(1974) [21] WHEELER, M. F. A priori L2 error estimates for Galerkin approximation to parabolic partial differential equation. SIAM Journal on Numerical Analysis, 10(4), 723-759(1973) [22] LIU, S., CHEN, Y. P., HUANG, Y. Q., and ZHOU, J. Two-grid methods for miscible displacement problem by Galerkin methods and mixed finite-element methods. International Journal of Computer Mathematics, 95(8), 1453-1477(2018) [23] CHEN, Y. P. and HU, H. Z. Two-grid method for miscible displacement problem by mixed finite element methods and mixed finite element method of characteristics. Communications in Computational Physics, 19(5), 1503-1528(2016) |