Applied Mathematics and Mechanics (English Edition) ›› 2021, Vol. 42 ›› Issue (7): 915-930.doi: https://doi.org/10.1007/s10483-021-2744-7
• Articles • Next Articles
Jie SU1, Hongxia SONG2, Liaoliang KE1, S. M. AIZIKOVICH3
Received:
2021-01-30
Revised:
2021-04-06
Online:
2021-07-01
Published:
2021-06-24
Contact:
Liaoliang KE, E-mail:llke@tju.edu.cn
Supported by:
2010 MSC Number:
Jie SU, Hongxia SONG, Liaoliang KE, S. M. AIZIKOVICH. The size-dependent elastohydrodynamic lubrication contact of a coated half-plane with non-Newtonian fluid. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 915-930.
[1] CHEN, P., CHEN, S., and PENG, J. Interface behavior of a thin-film bonded to a graded layer coated elastic half-plane. International Journal of Mechanical Sciences, 115-116, 489–500(2016) [2] BJORLING, M., LARSSON, R., and MARKLUND, P. The effect of DLC coating thickness on elstohydrodynamic friction. Tribology Letters, 55, 353–362(2014) [3] GUO, Y. B., LU, X. Q., LI, W. Y., and HE, T. Interfacial stress and failure analysis for piston ring coatings under dry running condition. Tribology Transactions, 356, 1027–1034(2013) [4] CHU, L. M., CHEN, C. Y., TEE, C. K., CHEN, Q. D., and LI, W. L. Elastohydrodynamic lubrication analysis for transversely isotropic coating layer. Journal of Tribology, 136, 031502(2014) [5] CHEN, Z., GOLTSBERG, R., and ETSION, I. A universal model for a frictionless elastic-plastic coated spherical normal contact with moderate to large coating thicknesses. Tribology International, 114, 485–493(2017) [6] COMEZ, I. and ERDOL, R. Frictional contact problem of a rigid stamp and an elastic layer bonded to a homogeneous substrate. Archive of Applied Mechanics, 83, 15–24(2013) [7] YAN, J. and MI, C. W. On the receding contact between an inhomogeneously coated elastic layer and a homogeneous half-plane. Mechanics of Materials, 112, 18–27(2017) [8] STAN, G. and ADAMS, G. G. Adhesive contact between a rigid spherical indenter and an elastic multi-layer coated substrate. International Journal of Solids and Structures, 87, 1–10(2016) [9] ZHANG, X. L., LAUWERENS, W., STALS, L., HE, J. W., and CELIS, J. P. Fretting wear rate of sulphur deficient MoSx coatings based on dissipated energy. Journal of Materials Research, 16, 3567–3574(2001) [10] HABCHI, W. Influence of thermo-mechanical properties of coatings on friction in elastohydrodynamic lubricated contacts. Tribology International, 90, 113–122(2015) [11] HE, T., WANG, Z. J., and WU, J. Q. Effect of imperfect coating on the elastohydrodynamic lubrication: dislocation-like and force-like coating-substrate interfaces. Tribology International, 143, 106098(2020) [12] HU, J. J., SUN, W. M., JIANG, Z. H., ZHANG, W., LU, J. W., HUO, W. T., ZHANG, Y. S., and ZHANG, P. X. Indentation size effect on hardness in the body-centered cubic coarse grained and nanocrystalline tantalum. Materials Science and Engineering: A, 686, 19–25(2017) [13] MINDLIN, R. D. and TIERSTEN, H. F. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis, 11, 415–448(1962) [14] ZISIS, T., GOURGIOTIS, P. A., BAXEVANAKIS, K. P., and GEORGIADIS, H. G. Some basic contact problems in couple stress elasticity. International Journal of Solids and Structures, 51, 2084–2095(2014) [15] NEFF, P., MÜNCH, I., GHIBA, I. D., and MADEO, A. On some fundamental misunderstandings in the indeterminate couple stress model. International Journal of Solids and Structures, 81, 233–243(2016) [16] SHAAT, M. Physical and mathematical representations of couple stress effects on micro/nanosolids. International Journal of Applied Mechanics, 7, 1550012(2015) [17] GOURGIOTIS, P. A. and ZISIS, T. Two-dimensional indentation of microstructured solids characterized by couple-stress elasticity. The Journal of Strain Analysis for Engineering Design, 51, 318–331(2015) [18] ZISIS, T., GOURGIOTIS, F., and CORSO, D. A. Contact problem in couple stress thermoelasticity: the indentation by a hot flat punch. International Journal of Solids and Structures, 63, 226–239(2015) [19] SONG, H. X., KE, L. L., and WANG, Y. S. Sliding frictional contact analysis of an elastic solid with couple stresses. International Journal of Mechanical Sciences, 133, 804–816(2017) [20] WANG, Y. X., SHEN, H. M., ZHANG, X., ZHANG, B., LIU, J., and LI, X. Y. Semi-analytical study of microscopic two-dimensional partial slip contact problem within the framework of couple stress elasticity: cylindrical indenter. International Journal of Solids and Structures, 138, 76–86(2018) [21] BHATTACHARYYA, A. S. and MISHRA, S. K. Micro/nano-mechanical behaviour of magnetron sputtered Si-C-N coatings through nanoindentation and scratch tests. Journal of Micromechanics and Microengineering, 21, 015011(2011) [22] KARURIYA, A. N. and BHANDAKKAR, T. K. Plane strain indentation on finite thickness bonded layer in couple stress elasticity. International Journal of Solids and Structures, 108, 275–288(2017) [23] SONG, H. X., KE, L. L., WANG, Y. S., YANG, J., and JIANG, H. Two-dimensional frictionless contact of a coated half-plane based on couple stress theory. International Journal of Applied Mechanics, 10, 1850049(2018) [24] FIROUZ-ABADI, R. D., MOHAMMAD-KHANI, H., and RAHMANIAN, M. Vibration and stability analysis of DWCNT-based spinning nanobearings. International Journal of Structural Stability and Dynamics, 17, 1750102(2017) [25] ELSHARKAWY, A. A., HOLMES, M. J. A., EVANS, H. P., and SNIDLE, R. W. Micro-elastohydrodynamic lubrication of coated cylinders using coupled differential deflection method. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 220, 29–41(2006) [26] XIAO, Z. L. and SHI, X. Tribological and thermal properties of a crowned gear pair with high-speed and heavy-load in thermal micro-elastohydrodynamic lubrication. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 234, 541–553(2019) [27] SHIRVANI, K. A., MOSLEH, M., and SMITH, S. T. Nanopolishing by colloidal nanodiamond in elastohydrodynamic lubrication. Journal of Nanoparticle Research, 18, 248(2016) [28] WOLOSZYNSKI, T., TOUCHE, T., PODSIADLO, P., STACHOWIAK, G. W., CAYER-BARRIOZ, J., and MAZUYER, D. Effects of nanoscale ripple texture on friction and film thickness in EHL contacts. Tribology Letters, 67, 16(2019) [29] CHECO, H. M., DUREISSEIX, D., FILLOT, N., and RAISIN, J. A homogenized micro-elastohydrodynamic lubrication model: accounting for non-negligible microscopic quantities. Tribology International, 135, 344–354(2019) [30] MIHAILIDIS, A., AGOURIDAS, K., and PANAGIOTIDIS, K. Non-Newtonian starved thermal-elastohydrodynamic lubrication of finite line contacts. Tribology Transactions, 56, 88–100(2013) [31] TANNER, R. I. Engineering Rheology, Clarendon, Oxford (1988) [32] REE, T. and EYRING, H. Theory of non-Newtonian flow. I, solid plastic system. Journal of Applied Physics, 26, 793–809(1955) [33] JOHNSON, K. L. and TEVAARWERK, J. L. Shear behaviour of elastohydrodynamic oil films. Proceedings of the Royal Society of London A, 356, 215–236(1977) [34] BAIR, S. and WINER, W. O. A rheological model for EHL contacts based on primary laboratory data. Journal of Lubrication Technology, 101, 258–265(1979) [35] KIM, K. H. and SADEGHI, F. Non-Newtonian elastohydrodynamic lubrication of point contacts. Journal of Tribology, 113, 703–711(1991) [36] CUI, J., YANG, P., JIN, Z. M., and DOWSON, D. Transient elastohydrodynamic analysis of elliptical contacts. Part 3: non-Newtonian lubricant solution under isothermal and thermal conditions. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 221, 63–73(2007) [37] GWINNER, J. Frictional unilateral contact for hemitropic solids in micropolar elasticity and boundary element approximation. Applications of Mathematics in Engineering and Economics: AIP Conference Proceedings, 1789, 040030(2016) [38] YANG, P. and WEN, S. A generalized Reynolds equation for non-Newtonian thermal elastohydrodynamic lubrication. Journal of Tribology, 112, 631–636(1990) [39] DOWSON, D. A generalized Reynolds equation for fluid film lubrication. International Journal of Mechanical Sciences, 4, 159–170(1962) [40] YANG, P. R. and WEN, S. Z. A forward iterative numerical method for steady-state elastohydrodynamically lubricated line contacts. Tribology International, 23, 17–22(1990) [41] CASTLE, P. and DOWSON, D. A theoretical analysis of the starved elastohydrodynamic lubrication problem for cylinders in line contact. Elastohydrodynamic Lubrication 1972 Symposium, University of Leeds, Leeds (1972) [42] JOHNSON, K. L. Contact Mechanics, Combridge University Press, Cambridge (1985) [43] GRADSHTEYN, I. S. and RYZHIK, I. M. Table of Integrals, Series, and Products, Academic, New York (2000) [44] ERDOGAN, F. and GUPTA, G. D. On the numerical solution of singular integral equations. Quarterly of Applied Mathematics, 29, 525–534(1972) [45] DOWSON, D. and HIGGINSON, G. R. A numerical solution to the elastohydrodynamic problem. Journal Mechanical Engineering Science, 1, 6–15(1959) [46] SU, J., SONG, H. X., and KE, L. L. Elastohydrodynamic lubrication line contact in couple-stress elasticity. Mathematics and Mechanics of Solids, 26, 1053–1073(2021) [47] LI, K. Y. and HOOKE, C. J. Non-Newtonian effects in rough EHL contacts. Transient Processes in Tribology, 43, 167–177(2004) [48] LEE, R. T. and HAMROCK, B. J. A circular non-Newtonian fluid model: part I—used in elastohydrodynamic lubrication. Journal of Tribology, 112, 486–496(1990) [49] ELSHARKAWY, A. A. and HAMROCK, B. J. EHL of coated surfaces: part II—non-Newtonian results. Journal of Tribology, 116, 786–793(1994) |
[1] | Hai QING, Huidiao SONG. Nonlocal stress gradient formulation for damping vibration analysis of viscoelastic microbeam in thermal environment [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 773-786. |
[2] | Haoran BAI, Zhanyu WANG, Sangyu LUO, Zhaoliang QU, Daining FANG. A modified single edge V-notched beam method for evaluating surface fracture toughness of thermal barrier coatings [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 693-710. |
[3] | Jun JIN, Ningdong HU, Hongping HU. Size effects on the mixed modes and defect modes for a nano-scale phononic crystal slab [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 21-34. |
[4] | Chunyu ZHANG, Biao WANG. Influence of nonlinear spatial distribution of stress and strain on solving problems of solid mechanics [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(9): 1355-1366. |
[5] | Yang ZHENG, Bin HUANG, Lijun YI, Tingfeng MA, Longtao XIE, Ji WANG. Nonlinear thickness-shear vibration of an infinite piezoelectric plate with flexoelectricity based on the method of multiple scales [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(5): 653-666. |
[6] | Chi XU, Yang LI, Mingyue LU, Zhendong DAI. Buckling analysis of functionally graded nanobeams under non-uniform temperature using stress-driven nonlocal elasticity [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 355-370. |
[7] | Xin ZHANG, Minghao ZHAO, Cuiying FAN, C. S. LU, Huayang DANG. Three-dimensional interfacial fracture analysis of a one-dimensional hexagonal quasicrystal coating [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1901-1920. |
[8] | Jun HONG, Zhuangzhuang HE, Gongye ZHANG, Changwen MI. Size and temperature effects on band gaps in periodic fluid-filled micropipes [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(9): 1219-1232. |
[9] | Minghao ZHAO, Cuiying FAN, C. S. LU, Huayang DANG. Interfacial fracture analysis for a two-dimensional decagonal quasi-crystal coating layer structure [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1633-1648. |
[10] | N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Unsteady flow of a Maxwell hybrid nanofluid past a stretching/shrinking surface with thermal radiation effect [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(10): 1511-1524. |
[11] | Zhangna XUE, Gongqi CAO, Jianlin LIU. Size-dependent thermoelasticity of a finite bi-layered nanoscale plate based on nonlocal dual-phase-lag heat conduction and Eringen's nonlocal elasticity [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(1): 1-16. |
[12] | Zhu SU, Lifeng WANG, Kaipeng SUN, Jie SUN. Transverse shear and normal deformation effects on vibration behaviors of functionally graded micro-beams [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(9): 1303-1320. |
[13] | M. I. KHAN, F. ALZAHRANI. Transportation of heat through Cattaneo-Christov heat flux model in non-Newtonian fluid subject to internal resistance of particles [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(8): 1157-1166. |
[14] | N. M. BUJURKE, M. H. KANTLI. Jacobian-free Newton-Krylov subspace method with wavelet-based preconditioner for analysis of transient elastohydrodynamic lubrication problems with surface asperities [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(6): 881-898. |
[15] | S. I. ABDELSALAM, M. M. BHATTI. Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(5): 711-724. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||