Applied Mathematics and Mechanics (English Edition) ›› 2022, Vol. 43 ›› Issue (3): 355-370.doi: https://doi.org/10.1007/s10483-022-2828-5
• Articles • Previous Articles Next Articles
Chi XU1,2, Yang LI1,2, Mingyue LU2, Zhendong DAI1,2
Received:
2021-09-08
Revised:
2021-12-20
Published:
2022-02-22
Contact:
Zhendong DAI, E-mail: zddai@nuaa.edu.cn
Supported by:
2010 MSC Number:
Chi XU, Yang LI, Mingyue LU, Zhendong DAI. Buckling analysis of functionally graded nanobeams under non-uniform temperature using stress-driven nonlocal elasticity. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 355-370.
[1] AUTUMN, K., LIANG, Y. A., HSIEH, S. T., ZESCH, W., CHAN, W. P., KENNY, T. W., FEARING, R., and FULL, R. J. Adhesive force of a single gecko foot-hair. nature, 405, 681–685(2000) [2] KOPPERGER, E., LIST, J., MADHIRA, S., ROTHFISCHER, F., LAMB, D. C., and SIMMEL, F. C. A self-assembled nanoscale robotic arm controlled by electric fields. Science, 359, 296–300(2018) [3] WANG, Z. L. and SONG, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312, 242–246(2006) [4] XIANG, R., INOUE, T., ZHENG, Y. J., KUMAMOTO, A., QIAN, Y., SATO, Y., LIU, M., TANG, D. M., GOKHALE, D., GUO, J., HISAMA, K., YOTSUMOTO, S., OGAMOTO, T., ARAI, H., KOBAYASHI, Y., ZHANG, H., HOU, B., ANISIMOV, A., MARUYAMA, M., MIYATA, Y., OKADA, S., CHIASHI, S., LI, Y., KONG, J., KAUPPINEN, E. I., IKUHARA, Y., SUENAGA, K., and MARUYAMA, S. One-dimensional van der Waals heterostructures. Science, 367, 537–542(2020) [5] PEISKER, H., MICHELS, J., and GORB, S. N. Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nature Communications, 4, 1661(2013) [6] ALIBARDI, L. Review: mapping proteins localized in adhesive setae of the tokay gecko and their possible influence on the mechanism of adhesion. Protoplasma, 255, 1785–1797(2018) [7] NIX, W. D. and GAO, H. J. Indentation size effects in crystalline materials: a law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 46, 411–425(1998) [8] HUANG, Y., ZHANG, F., HWANG, K. C., NIX, W. D., PHARR, G. M., and FENG, G. A model of size effects in nano-indentation. Journal of the Mechanics and Physics of Solids, 54, 1668–1686(2006) [9] ZHU, X. W. and LI, L. Closed form solution for a nonlocal strain gradient rod in tension. International Journal of Engineering Science, 119, 16–28(2017) [10] GUO, S., HE, Y. M., LEI, J., LI, Z. K., and LIU, D. B. Individual strain gradient effect on torsional strength of electropolished microscale copper wires. Scripta Materialia, 130, 124–127(2017) [11] GREER, J. R., OLIVER, W. C., and NIX, W. D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Materialia, 53, 1821–1830(2005) [12] LU, L., GUO, X. M., and ZHAO, J. Z. Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. International Journal of Engineering Science, 116, 12–24(2017) [13] ERINGEN, A. C. Theory of nonlocal elasticity and some applications. Res Mechanica, 21, 313–342(1987) [14] ERINGEN, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54, 4703–4710(1983) [15] ERINGEN, A. C. Nonlocal polar elastic continua. International Journal of Engineering Science, 10, 1–16(1972) [16] GHANNADPOUR, S. A. M., MOHAMMADI, B., and FAZILATI, J. Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method. Composite Structures, 96, 584–589(2013) [17] KHODABAKHSHI, P. and REDDY, J. N. A unified integro-differential nonlocal model. International Journal of Engineering Science, 95, 60–75(2015) [18] SOBHY, M. and ZENKOUR, A. M. Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams with CNT reinforced face sheets on a viscoelastic substrate. Composites Part B: Engineering, 154, 492–506(2018) [19] LU, L., GUO, X. M., and ZHAO, J. Z. A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms. International Journal of Engineering Science, 119, 265–277(2017) [20] MIRJAVADI, S. S., RABBY, S., SHAFIEI, N., AFSHARI, B. M., and KAZEMI, M. On sizedependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment. Applied Physics A-Materials Science Processing, 123, 315(2017) [21] BARATI, M. R. and ZENKOUR, A. M. Investigating post-buckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions. Composite Structures, 182, 91–98(2017) [22] AL-SHUJAIRI, M. and MOLLAMAHMUTOGLU, C. Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect. Composites Part B: Engineering, 154, 292–312(2018) [23] WANG, Y. B., ZHU, X. W., and DAI, H. H. Exact solutions for the static bending of EulerBernoulli beams using Eringen’s two-phase local/nonlocal model. AIP Advances, 6, 22(2016) [24] ZHANG, P., QING, H., and GAO, C. F. Theoretical analysis for static bending of circular EulerBernoulli beam using local and Eringen’s nonlocal integral mixed model. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik, 99, 8(2019) [25] ZHANG, P., QING, H., and GAO, C. F. Analytical solutions of static bending of curved Timoshenko microbeams using Eringen’s two-phase local/nonlocal integral model. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik, 100, 7(2020) [26] ROMANO, G., BARRETTA, R., DIACO, M., and DE SCIARRA, F. M. Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. International Journal of Mechanical Sciences, 121, 151–156(2017) [27] FERNANDEZ-SAEZ, J., ZAERA, R., LOYA, J. A., and REDDY, J. N. Bending of Euler-Bernoulli beams using Eringen’s integral formulation: a paradox resolved. International Journal of Engineering Science, 99, 107–116(2016) [28] JIANG, P., QING, H., and GAO, C. F. Theoretical analysis on elastic buckling of nanobeams based on stress-driven nonlocal integral model. Applied Mathematics and Mechanics (English Edition), 41(2), 207–232(2020) https://doi.org/10.1007/s10483-020-2569-6 [29] ROMANO, G. and BARRETTA, R. Nonlocal elasticity in nanobeams: the stress-driven integral model. International Journal of Engineering Science, 115, 14–27(2017) [30] BARRETTA, R., FABBROCINO, F., LUCIANO, R., DE SCIARRA, F. M., and RUTA, G. Buckling loads of nano-beams in stress-driven nonlocal elasticity. Mechanics of Advanced Materials and Structures, 27, 869–875(2020) [31] BARRETTA, R., FAGHIDIAN, S. A., and LUCIANO, R. Longitudinal vibrations of nano-rods by stress-driven integral elasticity. Mechanics of Advanced Materials and Structures, 26, 1307–1315(2019) [32] BARRETTA, R., FAGHIDIAN, S. A., and DE SCIARRA, F. M. Stress-driven nonlocal integral elasticity for axisymmetric nano-plates. International Journal of Engineering Science, 136, 38–52(2019) [33] SEDIGHI, H. M. and MALIKAN, M. Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment. Physica Scripta, 95, 055218(2020) [34] ZHANG, P., QING, H., and GAO, C. F. Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model. Composite Structures, 245, 112362(2020) [35] DARBAN, H., FABBROCINO, F., FEO, L., and LUCIANO, R. Size-dependent buckling analysis of nanobeams resting on two-parameter elastic foundation through stress-driven nonlocal elasticity model. Mechanics of Advanced Materials and Structures, 28, 2408–2416(2020) [36] BIAN, P. L. and QING, H. Torsional static and vibration analysis of functionally graded nanotube with bi-Helmholtz kernel based stress-driven nonlocal integral model. Applied Mathematics and Mechanics (English Edition), 42(3), 425–440(2021) https://doi.org/10.1007/s10483-021-2708-9 [37] MA, Y. B. Size-dependent thermal conductivity in nanosystems based on non-Fourier heat transfer. Applied Physics Letters, 101, 211905(2012) [38] DONG, Y., CAO, B. Y., and GUO, Z. Y. Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics. Physica E: Low-dimensional Systems and Nanostructures, 56, 256–262(2014) [39] YU, Y. J., LI, C. L., XUE, Z. N., and TIAN, X. G. The dilemma of hyperbolic heat conduction and its settlement by incorporating spatially nonlocal effect at nanoscale. Physics Letters A, 380, 255–261(2016) [40] YU, Y. J., TIAN, X. G., and LIU, X. R. Size-dependent generalized thermoelasticity using Eringen’s nonlocal model. European Journal of Mechanics-A/Solids, 51, 96–106(2015) [41] YU, Y. J., XUE, Z. N., LI, C. L., and TIAN, X. G. Buckling of nanobeams under nonuniform temperature based on nonlocal thermoelasticity. Composite Structures, 146, 108–113(2016) [42] LEI, J., HE, Y. M., LI, Z. K., GUO, S., and LIU, D. B. Effect of nonlocal thermoelasticity on buckling of axially functionally graded nanobeams. Journal of Thermal Stresses, 42, 526–539(2019) [43] BARATI, M. R. and ZENKOUR, A. Forced vibration of sinusoidal FG nanobeams resting on hybrid Kerr foundation in hygro-thermal environments. Mechanics of Advanced Materials and Structures, 25, 669–680(2018) [44] LEI, J., HE, Y. M., GUO, S., LI, Z. K., and LIU, D. B. Thermal buckling and vibration of functionally graded sinusoidal microbeams incorporating nonlinear temperature distribution using DQM. Journal of Thermal Stresses, 40, 665–689(2017) [45] SARKAR, N. Thermoelastic responses of a finite rod due to nonlocal heat conduction. Acta Mechanica, 231, 947–955(2020) [46] SINGH, P. and YADAVA, R. D. S. Effect of surface stress on resonance frequency of microcantilever sensors. IEEE Sensors Journal, 18, 7529–7536(2018) [47] WU, J. Z. and ZHANG, N. H. Clamped-end effect on static detection signals of DNAmicrocantilever. Applied Mathematics and Mechanics (English Edition), 42(10), 1423–1438(2021) https://doi.org/10.1007/s10483-021-2780-6 [48] WU, J. K. About beam (in Chinese). Mechanics in Engineering, 30, 106–109(2008) [49] XI, Y. Y., LYU, Q., ZHANG, N. H., and WU, J. Z. Thermal-induced snap-through buckling of simply-supported functionally graded beams. Applied Mathematics and Mechanics (English Edition), 41(12), 1821–1832(2020) https://doi.org/10.1007/s10483-020-2696-7 |
[1] | H. M. FEIZABAD, M. H. YAS. Free vibration and buckling analysis of polymeric composite beams reinforced by functionally graded bamboo fibers [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 543-562. |
[2] | Hai QING, Huidiao SONG. Nonlocal stress gradient formulation for damping vibration analysis of viscoelastic microbeam in thermal environment [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 773-786. |
[3] | U. N. ARIBAS, M. AYDIN, M. ATALAY, M. H. OMURTAG. Cross-sectional warping and precision of the first-order shear deformation theory for vibrations of transversely functionally graded curved beams [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2109-2138. |
[4] | Pei ZHANG, P. SCHIAVONE, Hai QING. Unified two-phase nonlocal formulation for vibration of functionally graded beams resting on nonlocal viscoelastic Winkler-Pasternak foundation [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 89-108. |
[5] | Jun JIN, Ningdong HU, Hongping HU. Size effects on the mixed modes and defect modes for a nano-scale phononic crystal slab [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 21-34. |
[6] | Chunyu ZHANG, Biao WANG. Influence of nonlinear spatial distribution of stress and strain on solving problems of solid mechanics [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(9): 1355-1366. |
[7] | Yang ZHENG, Bin HUANG, Lijun YI, Tingfeng MA, Longtao XIE, Ji WANG. Nonlinear thickness-shear vibration of an infinite piezoelectric plate with flexoelectricity based on the method of multiple scales [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(5): 653-666. |
[8] | Xinlei LI, Jianfei WANG. Effects of layer number and initial pressure on continuum-based buckling analysis of multi-walled carbon nanotubes accounting for van der Waals interaction [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1857-1872. |
[9] | Jun HONG, Zhuangzhuang HE, Gongye ZHANG, Changwen MI. Size and temperature effects on band gaps in periodic fluid-filled micropipes [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(9): 1219-1232. |
[10] | Jie SU, Hongxia SONG, Liaoliang KE, S. M. AIZIKOVICH. The size-dependent elastohydrodynamic lubrication contact of a coated half-plane with non-Newtonian fluid [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 915-930. |
[11] | Zhangna XUE, Gongqi CAO, Jianlin LIU. Size-dependent thermoelasticity of a finite bi-layered nanoscale plate based on nonlocal dual-phase-lag heat conduction and Eringen's nonlocal elasticity [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(1): 1-16. |
[12] | Zhu SU, Lifeng WANG, Kaipeng SUN, Jie SUN. Transverse shear and normal deformation effects on vibration behaviors of functionally graded micro-beams [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(9): 1303-1320. |
[13] | S. AFSHIN, M. H. YAS. Dynamic and buckling analysis of polymer hybrid composite beam with variable thickness [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(5): 785-804. |
[14] | Liang ZHAO, Jiajia SUN, Xian WANG, Li ZENG, Chunlei WANG, Yusong TU. System-size effect on the friction at liquid-solid interfaces [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(3): 471-478. |
[15] | Yong HUANG. Bending and free vibrational analysis of bi-directional functionally graded beams with circular cross-section [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(10): 1497-1516. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||