Applied Mathematics and Mechanics (English Edition) ›› 2022, Vol. 43 ›› Issue (7): 1081-1108.doi: https://doi.org/10.1007/s10483-022-2864-6
• Articles • Previous Articles Next Articles
Xiantao ZHANG1, Haicheng ZHANG2, Xiao ZHOU2, Ze SUN2,3
Received:
2021-11-08
Revised:
2022-01-26
Online:
2022-07-01
Published:
2022-06-30
Contact:
Haicheng ZHANG, E-mail: zhanghc@hnu.edu.cn
Supported by:
2010 MSC Number:
Xiantao ZHANG, Haicheng ZHANG, Xiao ZHOU, Ze SUN. Recent advances in wave energy converters based on nonlinear stiffness mechanisms. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 1081-1108.
[1] CLEMENT, A., MCCULLEN, P., FALCÃO, A., FIORENTINO, A., and GARDNER, F. Waveenergy in Europe:current status and perspectives. Renewable and Sustainable Energy Reviews, 6, 405-431(2002) [2] GUNN, K. and STOCK-WILLIAMS, C. Quantifying the global wave power resource. Renewable Energy, 44, 296-304(2012) [3] CAVALERI, L., ALVES, J. H. G. M., and ARDHUIN, F. Wave modelling-the state of the art. Progress in Oceanography, 75, 603-674(2007) [4] SINGH, F. and HEYMANN, S. K. Machine learning-assisted anomaly detection in maritime navigation using AIS data. IEEE/ION Position, Location and Navigation Symposium, Portland (2020) [5] REGUERO, B. G., LOSADA, I. J., and MENDEZ, F. J. A global wave power resource and itsseasonal, interannual and long-term variability. Applied Energy, 148, 366-380(2015) [6] REGUERO, B. G., LOSADA, I. J., and MENDEZ, F. J. A recent increase in global wave poweras a consequence of oceanic warming. Nature Communications, 10, 1-14(2019) [7] AKPINAR, A. and KOMURCU, M. Ï. Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data. Applied Energy, 101, 502-512(2013) [8] IGLESIAS, G. and CARBALLO, R. Offshore and inshore wave energy assessment:Asturias (N Spain). Energy, 35, 1964-1972(2010) [9] IGLESIAS, G. and CARBALLO, R. Wave energy potential along the Death Coast (Spain). Energy, 34, 1963-1975(2009) [10] SUN, Z., ZHANG, H. C., XU, D. L., LIU, X. L., and DING, J. Assessment of wave power in the South China Sea based on 26-year high-resolution hindcast data. Energy, 197, 117218(2020) [11] SUN, Z., ZHANG, H. C., LIU, X. L., DING J., XU, D. L., and CAI, Z. W. Wave energy assessment of the Xisha Group Islands zone for the period 2010-2019. Energy, 220, 119721(2021) [12] RASCLE, N. and ARDHUIN, F. A global wave parameter database for geophysical applications, part 2:model validation with improved source term parameterization. Ocean Modelling, 70, 174-188(2013) [13] SIERRA, J. P., MOSSO, C., and GONZ ALEZ-MARCO, D. Wave energy resource assessment inMenorca (Spain). Renewable Energy, 71, 51-60(2014) [14] SIERRA, J. P., MARTIN, C., MOSSO, C., MESTRES, M., and JEBBAD, R. Wave energy po-tential along the Atlantic coast of Morocco. Renewable Energy, 96, 20-32(2016) [15] GONC ALVES, M., MARTINHO, P., and GUEDES SOARES, C. Assessment of wave energy in the Canary Islands. Renewable Energy, 68, 774-784(2014) [16] MAHMOODI, K., GHASSEMI, H., and RAZMINIA, A. Temporal and spatial characteristics of wave energy in the Persian Gulf based on the ERA5 reanalysis dataset. Energy, 187, 115991(2019) [17] LIANG, B. C., SHAO, Z. X., WU, G. X., SHAO, M., and SUN, J. W. New equations of wave energy assessment accounting for the water depth. Applied Energy, 188, 130-139(2017) [18] GUO, B. and RINGWOOD, J. V. Geometric optimisation of wave energy conversion devices:a survey. Applied Energy, 297, 117100(2021) [19] FALNES, J. A review of wave-energy extraction. Marine Structures, 20, 185-201(2007) [20] KURNIAWAN, A., GREAVES, D., and CHAPLIN, J. Wave energy devices with compressible volumes. Proceedings of the Royal Society A, 470, 20140559(2014) [21] SHENG, W. Wave energy conversion and hydrodynamics modelling technologies:a review. Renewable and Sustainable Energy Reviews, 109, 482-498(2019) [22] PAPARELLA, F. and RINGWOOD, J. V. Optimal control of a three-body hinge-barge wave energy device using pseudospectral methods. IEEE Transactions on Sustainable Energy, 8, 200-207(2017) [23] JIN, S. Y., PATTON, R. J., and GUO, B. Y. Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning. Energy, 169, 819-832(2019) [24] LIU, C. H., YANG, Q. J., and BAO, G. Latching control using optimal control method for a raft-type wave energy converter. Ships and Offshore Structures, 13, 138-154(2018) [25] PELLEGRINI, S. P., TOLOU, N., SCHENK, M., and HERDER, J. L. Bistable vibration energy harvesters:a review. Journal of Intelligent Material Systems and Structures, 24, 1303-1312(2013) [26] DING, H. and CHEN, L. Q. Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dynamics, 100, 3061-3107(2020) [27] ZHANG, H. C., ZHANG, J. L., ZHOU, X., SHI, Q. J., XU, D. L., SUN, Z., LU, Y., and WU, B. Robust performance improvement of a raft-type wave energy converter using a nonlinear stiffness mechanism. International Journal of Mechanical Sciences, 211, 106776(2021) [28] GRADOWSKI, M., ALVES, M., GOMES, R. P. F., and HENRIQUES, J. C. Integration of a hydrodynamic negative spring concept into the OWC spar buoy. Proceedings of the 12th European Wave and Tidal Energy Conference, Cork (2017) [29] GUO, B. Y. and RINGWOOD, J. V. Modelling of a vibro-impact power take-off mechanism for wave energy conversion. European Control Conference, Saint Petersburg (2020) [30] ZHENG, Z. Q., YAO, Z. P., CHANG, Z. Y., YAO, T., and LIU, B. A point absorber wave energy converter with nonlinear hardening spring power-take-off systems in regular waves. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineering for the Maritime Environment, 234, 820-829(2020) [7] AKPINAR, A. and KOM URC U, M. I. Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data. Applied Energy, 101, 502-512(2013) [8] IGLESIAS, G. and CARBALLO, R. Offshore and inshore wave energy assessment:Asturias (N Spain). Energy, 35, 1964-1972(2010) [9] IGLESIAS, G. and CARBALLO, R. Wave energy potential along the Death Coast (Spain). Energy, 34, 1963-1975(2009) [10] SUN, Z., ZHANG, H. C., XU, D. L., LIU, X. L., and DING, J. Assessment of wave power in the South China Sea based on 26-year high-resolution hindcast data. Energy, 197, 117218(2020) [11] SUN, Z., ZHANG, H. C., LIU, X. L., DING J., XU, D. L., and CAI, Z. W. Wave energy assessment of the Xisha Group Islands zone for the period 2010-2019. Energy, 220, 119721(2021) [12] RASCLE, N. and ARDHUIN, F. A global wave parameter database for geophysical applications, part 2:model validation with improved source term parameterization. Ocean Modelling, 70, 174-188(2013) [13] SIERRA, J. P., MOSSO, C., and GONZ ALEZ-MARCO, D. Wave energy resource assessment inMenorca (Spain). Renewable Energy, 71, 51-60(2014) [14] SIERRA, J. P., MART IN, C., MOSSO, C., MESTRES, M., and JEBBAD, R. Wave energy po- tential along the Atlantic coast of Morocco. Renewable Energy, 96, 20-32(2016) [15] GONC ALVES, M., MARTINHO, P., and GUEDES SOARES, C. Assessment of wave energy in the Canary Islands. Renewable Energy, 68, 774-784(2014) [16] MAHMOODI, K., GHASSEMI, H., and RAZMINIA, A. Temporal and spatial characteristics of wave energy in the Persian Gulf based on the ERA5 reanalysis dataset. Energy, 187, 115991(2019) [17] LIANG, B. C., SHAO, Z. X., WU, G. X., SHAO, M., and SUN, J. W. New equations of wave energy assessment accounting for the water depth. Applied Energy, 188, 130-139(2017) [18] GUO, B. and RINGWOOD, J. V. Geometric optimisation of wave energy conversion devices:a survey. Applied Energy, 297, 117100(2021) [19] FALNES, J. A review of wave-energy extraction. Marine Structures, 20, 185-201(2007) [20] KURNIAWAN, A., GREAVES, D., and CHAPLIN, J. Wave energy devices with compressible volumes. Proceedings of the Royal Society A, 470, 20140559(2014) [21] SHENG, W. Wave energy conversion and hydrodynamics modelling technologies:a review. Renewable and Sustainable Energy Reviews, 109, 482-498(2019) [22] PAPARELLA, F. and RINGWOOD, J. V. Optimal control of a three-body hinge-barge wave energy device using pseudospectral methods. IEEE Transactions on Sustainable Energy, 8, 200-207(2017) [23] JIN, S. Y., PATTON, R. J., and GUO, B. Y. Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning. Energy, 169, 819-832(2019) [24] LIU, C. H., YANG, Q. J., and BAO, G. Latching control using optimal control method for a raft-type wave energy converter. Ships and Offshore Structures, 13, 138-154(2018) [25] PELLEGRINI, S. P., TOLOU, N., SCHENK, M., and HERDER, J. L. Bistable vibration energy harvesters:a review. Journal of Intelligent Material Systems and Structures, 24, 1303-1312(2013) [26] DING, H. and CHEN, L. Q. Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dynamics, 100, 3061-3107(2020) [27] ZHANG, H. C., ZHANG, J. L., ZHOU, X., SHI, Q. J., XU, D. L., SUN, Z., LU, Y., and WU, B. Robust performance improvement of a raft-type wave energy converter using a nonlinear stiffness mechanism. International Journal of Mechanical Sciences, 211, 106776(2021) [28] GRADOWSKI, M., ALVES, M., GOMES, R. P. F., and HENRIQUES, J. C. Integration of a hydrodynamic negative spring concept into the OWC spar buoy. Proceedings of the 12th European Wave and Tidal Energy Conference, Cork (2017) [29] GUO, B. Y. and RINGWOOD, J. V. Modelling of a vibro-impact power take-off mechanism for wave energy conversion. European Control Conference, Saint Petersburg (2020) [30] ZHENG, Z. Q., YAO, Z. P., CHANG, Z. Y., YAO, T., and LIU, B. A point absorber wave energy converter with nonlinear hardening spring power-take-off systems in regular waves. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineering for the Maritime Environment, 234, 820-829(2020)1106 Xiantao ZHANG, Haicheng ZHANG, Xiao ZHOU, and Ze SUN [31] HARNE, R. L., SCHOEMAKER, M. E., DUSSAULT, B. E., and WANG, K. W. Wave heave energy conversion using modular multistability. Applied Energy, 130, 148-156(2014) [32] WU, Z. J., LEVI, C., and ESTEFEN, S. F. Wave energy harvesting using nonlinear stiffness system. Applied Ocean Research, 74, 102-116(2018) [33] ZHANG, X. T., TIAN, X. L., XIAO, L. F., LI, X., and CHEN, L. F. Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter. Applied Energy, 228, 450-467(2018) [34] TETU, A., FERRI, F., KRAMER, M. B., and TODALSHAUG, J. H. Physical and mathematical ? modeling of awave energy converter equipped with a negative spring mechanism for phase control. Energies, 11, 1-23(2018) [35] KURNIAWAN, A. and ZHANG, X. T. Application of a negative stiffness mechanism on pitching wave energy devices. Proceedings of the 5th Offshore Energy and Storage Symposium, Denmark (2018) [36] VIET, N. V. and WANG, Q. Ocean wave energy pitching harvester with a frequency tuning capability. Energy, 162, 603-617(2018) [37] WANG, L. X., TANG, H., and WU, Y. H. On a submerged wave energy converter with snapthrough power take-off. Applied Ocean Research, 80, 24-36(2018) [38] WU, Z. Nonlinear Stiffness Concept in Wave Energy Conversion, Ph. D. dissertation, Universidade Federal do Rio de Janeiro (2019) [39] ZHANG, X. T., TIAN, X. L., XIAO, L. F., LI, X., and LU, W. Y. Mechanism and sensitivity for broadband energy harvesting of an adaptive bistable point absorber wave energy converter. Energy, 188, 115984(2019) [40] WU, Z. J., LEVI, C., and ESTEFEN, S. F. Practical considerations on nonlinear stiffness system for wave energy converter. Applied Ocean Research, 92, 101935(2019) [41] ZHANG, H. C., XI, R., XU, D. L., WANG, K., SHI, Q. J., ZHAO, H., and WU, B. Efficiency enhancement of a point wave energy converter with a magnetic bistable mechanism. Energy, 181, 1152-1165(2019) [42] ZHANG, X. T., YANG, J., and XIAO, L. F. Numerical study of an oscillating wave energy converter with nonlinear snap-through power-take-off systems in regular waves. International Ocean and Polar Engineering Conference, Busan (2014) [43] SCHUBERT, B. W., ROBERTSON, W. S. P., CAZZOLATO, B. S., and GHAYESH, M. H. Enhancement of a 3-DOF submerged wave energy device using bistability. Proceedings of the 13th European Wave and Tidal Energy Conference, Naples (2019) [44] SCHUBERT, B. W., ROBERTSON, W. S. P., CAZZOLATO, B. S., GHAYESH, M. H., and SERGIIENKO, N. Y. Performance enhancement of submerged wave energy device using bistability. Ocean Engineering, 213, 107816(2020) [45] ZHAO, H., ZHANG, H. C., BI, R. G., XI, R., XU, D. L., SHI, Q. J., and WU, B. Enhancing efficiency of a point absorber bistable wave energy converter under low wave excitations. Energy, 212, 118671(2020) [46] LI, Y., ZHANG, X. T., and XIAO, L. F. Parametric study on power capture performance of an adaptive bistable point absorber wave energy converter in irregular waves. Journal of Ocean Engineering and Science (2021) https://doi.org/10.1016/j.joes.2021.09.011 [47] LIU, B. Q., LEVI, C., ESTEFEN, S. F., WU, Z. J., and DUAN, M. L. Evaluation of the double snap-through mechanism on the wave energy converter's performance. Journal of Marine Science and Application, 20, 268-283(2021) [48] ZHANG, H. C., ZHOU, X., XU, D. L., ZOU, W. S., DING, J., and XU, S. Y. Nonlinear stiffness mechanism for high-efficiency and broadband raft-type wave energy converters. Mechanical Systems and Signal Processing, 177, 109168(2022) [49] SONG, Y., GUO, X. X., WANG, H. C., TIAN, X. L., WEI, H. D., and ZHANG, X. T. Performance analysis of an adaptive bistable point absorber wave energy converter under white noise wave excitation. IEEE Transactions on Sustainable Energy, 12, 1090-1099(2021) [50] SHI, Q. J., XU, D. L., and ZHANG, H. C. Performance analysis of a raft-type wave energy converter with a torsion bi-stable mechanism. Energy, 227, 120388(2021) [51] KAMARLOUEI, M., HALLAK, T. S., GASPAR, J. F., and GUEDES SOARES, C. Evaluation of the mechanical negative spring mechanism on the performance of a hinged wave energy converter. 40th International Conference on Ocean, Offshore and Arctic Engineering, Virtual Conference (2021) [52] ZHANG, N. F., ZHANG, X. T., XIAO, L. F., WEI, H. D., and CHEN, W. X. Evaluation of long-term power capture performance of a bistable point absorber wave energy converter in South China Sea. Ocean Engineering, 237, 109338(2021) [53] LE, H. R., COLLINS, K. M., GREAVES, D. M., and BELLAMY, N. W. Mechanics and materials in the design of a buckling diaphragm wave energy converter. Materials and Design, 79, 86-93(2015) [54] LIU, B. Q., YI, H. G., LEVI, C., ESTEFEN, S. F., WU, Z. J., and DUAN, M. L. Improved bistable mechanism for wave energy harvesting. Ocean Engineering, 232, 109139(2021) [55] XI, R., ZHANG, H. C., XU, D. L., ZHAO, H., and MONDAL, R. High-performance and robust bistable point absorber wave energy converter. Ocean Engineering, 229, 108767(2021) [56] THOMAS, S. H., TODALSHAUG, J. H., and RINGWOOD, J. V. A realistic nonlinear benchmark problem for wave energy controllers-COERbuoy1. 14th European Wave and Tidal Energy Conference, Plymouth (2021) [57] LI, M. and JING, X. J. A bistable X-structured electromagnetic wave energy converter with a novel mechanical-motion-rectifier:design, analysis, and experimental tests. Energy Conversion and Management, 244, 114466(2021) [58] SCHUBERT, B. W., SERGIIENKO, N. Y., CAZZOLATO, B. S., ROBERTSON, W. S. P., and GHAYESH, M. H. The true potential of nonlinear stiffness for point absorbing wave energy converters. Ocean Engineering, 245, 110342(2022) [59] SCHUBERT, B. W., ROBERTSON, W. S. P., CAZZOLATO, B. S., SERGIIENKO, N. Y., and GHAYESH, M. H. Nonlinear stiffness enhancement of submerged wave energy device in high fidelity model. Ocean Engineering, 254, 111295(2022) [60] JIN, H., ZHANG, H., XU, D., DING, J., and SUN, Z. Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness. Renewable Energy, 1-25(2022) [61] ZHANG, X. T. and YANG, J. M. Power capture performance of an oscillating-body WEC with nonlinear snap through PTO systems in irregular waves. Applied Ocean Research, 52, 261-273(2015) [62] TODALSHAUG, J. H., ASGEIRSSON, G. S., HJ ÃLMARSSON, E., MAILLET, J., and MOLER, P. Tank testing of an inherently phase-controlled wave energy converter. International Journal of Marine Energy, 15, 68-84(2016) [63] ZHANG, X. T., YANG, J. M., and XIAO, L. F. An oscillating wave energy converter with nonlinear snap-through power-take-off systems in regular waves. China Ocean Engineering, 30, 565-580(2016) [64] XIAO, X. L., XIAO, L. F., and PENG, T. Comparative study on power capture performance of oscillating-body wave energy converters with three novel power take-off systems. Renewable Energy, 103, 94-105(2017) [65] YOUNESIAN, D. and ALAM, M. Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting. Applied Energy, 197, 292-302(2017) [66] LI, L., ZHANG, X. T., YUAN, Z. M., and GAO, Y. Multi-stable mechanism of an oscillating-body wave energy converter. IEEE Transactions on Sustainable Energy, 11, 500-508(2018) [67] ROVEDA, S. Numerical Assessment of Negative Spring on Spar OWC Based in the IVV Method, master dissertation, T′ ecnico Lisboa (2016) [68] GUO, B. Y. and RINGWOOD, J. V. Parametric study of a vibro-impact wave energy converter. IFAC-PapersOnLine, 53, 12283-12288(2020) [69] CHEN, M. S., XIAO, P. P., ZHANG, Z. B., SUN, L., and LI, F. Effects of the end-stop mechanism on the nonlinear dynamics and power generation of a point absorber in regular waves. Ocean Engineering, 242, 110123(2021) [70] GUO, B. Y. and RINGWOOD, J. V. Non-linear modeling of a vibro-impact wave energy converter. IEEE Transactions on Sustainable Energy, 12, 492-500(2021) [71] LIU, Y., JIANG, H. B., PAVLOVSKAIA, E., and WIERCIGROCH, M. Experimental investigation of the vibro-impact capsule system. Procedia IUTAM, 22, 237-243(2015) [72] WILSON, D. G., BACELLI, G., ROBINETT, R. D., III, and ABDELKHALIK, O. Nonlinear Control Design for Nonlinear Wave Energy Converters, US10823134B2, U. S. A.(2018) [73] KHASAWNEH, M. A. and DAQAQ, M. F. Internally-resonant broadband point wave energy absorber. Energy Conversion and Management, 247, 114751(2021) [74] COPOWER. Ocean (2022) https://www.copower.com [75] SHI, Q. J., XU, D. L., and ZHANG, H. C. Performance analysis of a raft-type wave energy converter with a torsion bi-stable mechanism. Energy, 227, 120388(2021) [76] ZHANG, X. T., TIAN, X. L., XIAO, L. F., LI, X., and CHEN, L. F. Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter. Applied Energy, 228, 450-467(2018) [77] ZHANG, X. T., YANG, J., and XIAO, L. F. Numerical study of an oscillating wave energy converter with nonlinear snap-through power-take-off systems in regular waves. Journal of Ocean and Wind Energy, 1, 225-230(2014) [78] CUMMINS, W. E. The impulse response function and ship motions. Schiffstechnik, 9, 101-109(1962) [79] TAGHIPOUR, R., PEREZ, T., and MOAN, T. Hybrid frequency-time domain models for dynamic response analysis of marine structures. Ocean Engineering, 35, 685-705(2008) [80] FALNES, J. and PERLIN, M. Reviewer ocean waves and oscillating systems:linear interactions including wave-energy extraction. Applied Mechanics Reviews, 56, B3(2003) [81] FALTINSEN, O. M. Sea Loads on Ships and Offshore Structures, Cambridge University Press, Cambridge (1990) [82] MERIGAUD, A. and RINGWOOD, J. V. A nonlinear frequency-domain approach for numericalsimulation of wave energy converters. IEEE Transactions on Sustainable Energy, 9, 86-94(2018) [83] OGILVIE, T. Recent progress towards the understanding and prediction of ship motions. Proceedings of the 5th Symposium on Naval Hydrodynamics, Washington, D. C.(1964) [84] LETOURNEL, L., FERRANT, P., BABARIT, A., DUCROZET, G., and HARRIS, J. C. Comparison of fully nonlinear and weakly nonlinear potential flow solvers for the study of wave energy converters undergoing large amplitude motions. Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco (2014) [85] PENALBA, M., GIORGI, G., and RINGWOOD, J. V. Mathematical modelling of wave energy converters:a review of nonlinear approaches. Renewable and Sustainable Energy Reviews, 78, 1188-1207(2017) [86] GIORGI, G. and RINGWOOD, J. V. Analytical representation of nonlinear Froude-Krylov forces for 3-DoF point absorbing wave energy devices. Ocean Engineering, 164, 749-759(2018) [87] LETOURNEL, L., CHAUVIGNE, C., GELLY, B., BABARIT, A., and DUCROZET, G. Weaklynonlinear modeling of submerged wave energy converters. Applied Ocean Research, 75, 201-222(2018) [88] JIN, H. Q., ZHANG, H. C., XU, D. L., LIU, C. R., and XU, S. W. Analytical investigation on wave attenuation performance of a floating breakwater with nonlinear stiffness. Ocean Engineering, 243, 110160(2022) |
[1] | Guangdong SUI, Shuai HOU, Xiaofan ZHANG, Xiaobiao SHAN, Chengwei HOU, Henan SONG, Weijie HOU, Jianming LI. A bio-inspired spider-like structure isolator for low-frequency vibration [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1263-1286. |
[2] | M. HAMID, M. USMAN, Zhenfu TIAN. Computational analysis for fractional characterization of coupled convection-diffusion equations arising in MHD flows [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(4): 669-692. |
[3] | Wenjie SUN, Wentao MA, Fei ZHANG, Wei HONG, Bo LI. Snap-through path in a bistable dielectric elastomer actuator [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(8): 1159-1170. |
[4] | Bo YAN, Ning YU, Chuanyu WU. A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 1045-1062. |
[5] | Xingjian JING. The X-structure/mechanism approach to beneficial nonlinear design in engineering [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 979-1000. |
[6] | Qili TANG, Yunqing HUANG. Parallel finite element computation of incompressible magnetohydrodynamics based on three iterations [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 141-154. |
[7] | Guangpu ZHAO, Jiali ZHANG, Zhiqiang WANG, Yongjun JIAN. Electrokinetic energy conversion of electro-magneto-hydro-dynamic nanofluids through a microannulus under the time-periodic excitation [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 1029-1046. |
[8] | K. RAMESH, M. G. REDDY, B. SOUAYEH. Electro-magneto-hydrodynamic flow of couple stress nanofluids in micro-peristaltic channel with slip and convective conditions [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(4): 593-606. |
[9] | T. HAYAT, K. MUHAMMAD, A. ALSAEDI. Melting effect and Cattaneo-Christov heat flux in fourth-grade material flow through a Darcy-Forchheimer porous medium [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(12): 1787-1798. |
[10] | C. REVNIC, T. GROŞAN, M. SHEREMET, I. POP. Numerical simulation of MHD natural convection flow in a wavy cavity filled by a hybrid Cu-Al2O3-water nanofluid with discrete heating [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(9): 1345-1358. |
[11] | M. IMTIAZ, F. SHAHID, T. HAYAT, A. ALSAEDI. Melting heat transfer in Cu-water and Ag-water nanofluids flow with homogeneous-heterogeneous reactions [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(4): 465-480. |
[12] | A. RAUF, S. A. SHEHZAD, Z. ABBAS, T. HAYAT. Unsteady three-dimensional MHD flow of the micropolar fluid over an oscillatory disk with Cattaneo-Christov double diffusion [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(10): 1471-1486. |
[13] | Zeqi LU, Ke LI, Hu DING, Liqun CHEN. Nonlinear energy harvesting based on a modified snap-through mechanism [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(1): 167-180. |
[14] | A. MAHDY. Simultaneous impacts of MHD and variable wall temperature on transient mixed Casson nanofluid flow in the stagnation point of rotating sphere [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(9): 1327-1340. |
[15] | M. ELLERO, P. ESPAÑOL. Everything you always wanted to know about SDPD* (*but were afraid to ask) [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(1): 103-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||