[1] SLOTNICK, J., KHODADOUST, A., ALONSO, J., DARMOFAL, D., GROPP, W., LURIE, E., and MACEIPLIS, D. CFD vision 2030 study: a path to revolutionary computational aerosciences. Mchenry County Natural Hazards Mitigation Plan, NASA/CR-2014-218178(2014) [2] WILCOX, D. C. Turbulence Modeling for CFD, 3rd ed., DCW Industries, California, 124–128(2006) [3] SPALART, P. Turbulence. Are we getting smarter? 36th Fluid Dynamics Conference and Exhibit, San Francisco, CA (2006) [4] KOLMOGOROV, A. N. The equation of turbulent motion in an incompressible viscous fluid. Doklady Akademii Nauk Sssr, VI, 56–58(1942) [5] SAFFMAN, P. G. A model for inhomogeneous turbulent flow. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, A317, 417–433(1970) [6] LAUNDER, B. E. and SPALDING, D. B. Mathematical Models of Turbulence, Academic Press, Landon (1972) [7] MENTER, F. R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605(1994) [8] SHE, Z. S., CHEN, X., and HUSSAIN, F. Quantifying wall turbulence via a symmetry approach: a Lie group theory. Journal of Fluid Mechanics, 827, 322–356(2017) [9] CHEN, X., HUSSAIN, F., and SHE, Z. S. Quantifying wall turbulence via a symmetry approach, part 2: Reynolds stresses. Journal of Fluid Mechanics, 850, 401–438(2018) [10] XIAO, M. J. and SHE Z. S. Symmetry-based description of laminar-turbulent transition. Science China Physics, Mechanics and Astronomy, 62(9), 994711(2019) [11] LIU, F., FANG, L., and FANG, J. Non-equilibrium turbulent phenomena in transitional flat plate boundary-layer flows. Applied Mathematics and Mechanics (English Edition), 42(4), 567– 582(2021) https://doi.org/10.1007/s10483-021-2728-9 [12] CHEN, X., HUSSAIN, F., and SHE, Z. S. Predictions of canonical wall-bounded turbulent flows via a modified kω equation. Journal of Turbulence, 18(1), 1–35(2017) [13] YE, M. S. and DONG, M. Near-wall behaviors of oblique-shock-wave/turbulent-boundary-layer interactions. Applied Mathematics and Mechanics (English Edition), 38(10), 1357–1376(2017) https://doi.org/10.1007/s10483-017-2248-6 [14] WU, X. H. and MOIN, P. A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. Journal of Fluid Mechanics, 608, 81–112(2008) [15] ZAGAROLA, M. V. and SMITS, A. J. Mean-flow scaling of turbulent pipe flow. Journal of Fluid Mechanics, 372, 33–79(1998) [16] HULTMARK, M., VALLIKIKV, M., BAILEY, S. C. C., and SMITS, A. J. Turbulent pipe flow at extreme Reynolds numbers. Physical Review Letters, 108, 094502(2012) [17] WU, Y., CHEN, X., SHE, Z. S., and HUSSAIN, F. On the Karman constant in turbulent channel flow. Physica Scripta, 2013, 014009(2013) [18] CHEN, X., WEI, B. B., HUSSAIN, F., and SHE, Z. S. Anomalous dissipation and kinetic-energy distribution in pipes at very high Reynolds numbers. Physical Review E, 93, 011102(2015) [19] XIAO, M. J. and SHE, Z. S. Precise drag prediction of airfoil flows by a new algebraic model. Acta Mechanica Sinica, 36(1), 35–43(2020) [20] BI, W. T., WEI, Z., ZHENG, K. X., and SHE, Z. S. A symmetry-based length model for characterizing the hypersonic boundary layer transition on a slender cone at moderate incidence. Advances in Aerodynamics, 4, 1–23(2022) [21] SHE, Z. S., ZOU, H. Y., XIAO, M. J., CHEN, X., and HUSSAIN, F. Prediction of compressible turbulent boundary layer via a symmetry-based length model. Journal of Fluid Mechanics, 857, 449–468(2018) [22] SHE, Z. S., WU, Y., CHEN, X., and HUSSAIN, F. A multi-state description of roughness effects in turbulent pipe flow. New Journal of Physics, 14, 093054(2012) [23] JI, Y. and SHE, Z. S. Analytic derivation of Monin-Obukhov similarity function for open atmospheric surface layer. Science China Physics, Mechanics and Astronomy, 64(3), 34711(2021) [24] LI, R. and SHE, Z. S. Emergent mesoscopic quantum vortex and Planckian dissipation in the strange metal phase. New Journal of Physics, 23(4), 043050(2021) [25] LI, R. and SHE, Z. S. Unified energy law for fluctuating density wave orders in cuprate pseudogap phase. Communications Physics, 5(1), 13(2022) |