Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (1): 177-192.doi: https://doi.org/10.1007/s10483-025-3208-7
Previous Articles Next Articles
M. NAVEED1, M. IMRAN1,†(), T. ASGHAR1, Z. ABBAS2
Received:
2024-07-20
Revised:
2024-11-18
Online:
2025-01-03
Published:
2025-01-03
Contact:
M. IMRAN
E-mail:muhammadimran6490@gmail.com
2010 MSC Number:
M. NAVEED, M. IMRAN, T. ASGHAR, Z. ABBAS. Transport mechanism in chemically reactive hybrid nanofluidflow containing gyrotactic micro-organisms overa curved oscillatory surface. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 177-192.
[1] | SANNI, K. M., ASGHAR, S., JALIL, M., and OKECHI, K. M. Flow of viscous fluid along a nonlinearly stretching curved surface. Results in Physics, 7, 1–4 (2017) |
[2] | OKECHI, N. F., JALIL, M., and ASGHAR, S. Flow of viscous fluid along an exponentially stretching curved surface. Results in Physics, 7, 2851–2854 (2017) |
[3] | HAYAT, T., RASHID, M., ALSAEDI, A., and AHMED, B. Flow of nanofluid by nonlinear stretching velocity. Results in Physics, 8, 1104–1109 (2018) |
[4] | NAVEED, M., ABBAS, Z., SAJID, M., and HASNAIN, J. Dual solution in hydromagnetic viscous fluid flow past a shrinking curved surface. Arabian Journal for Science and Engineering, 43, 1189–1194 (2018) |
[5] | WANG, C. Y. Nonlinear streaming due to the oscillatory stretching of a sheet in a viscous fluid. Acta Mechanica, 72(3), 261–268 (1988) |
[6] | ABBAS, Z., WANG, Y., HAYAT, T., and OBERLACK, M. Hydromagnetic flow in a viscoelastic fluid due to the oscillatory stretching surface. International Journal of Non-Linear Mechanics, 43(8), 783–793 (2008) |
[7] | KHAN, S. U., SHEHZAD, S. A., and NASIR, S. Unsteady flow of chemically reactive Oldroyd-B fluid over oscillatory moving surface with thermo-diffusion and heat absorption/generation effects. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(2), 72 (2019) |
[8] | IMRAN, M., ABBAS, Z., NAVEED, M., and SALAMAT, N. Impact of Joule heating and melting on time dependent flow of nanoparticles due to an oscillatory stretchable curved wall. Alexandria Engineering Journal, 60(4), 4097–4113 (2021) |
[9] | HASNAIN, J., ABID, N., ALANSARI, M. O., and ULLAH, M. Z. Analysis on Cattaneo-Christov heat flux in three-phase oscillatory flow of non-Newtonian fluid through porous zone bounded by hybrid nanofluids. Case Studies in Thermal Engineering, 35, 102074 (2020) |
[10] | CASTRO, A. R., CHABANON, M., and GOYEAU, B. Numerical analysis of the fluid-solid interactions during steady and oscillatory flows of non-Newtonian fluid through deformable porous media. Chemical Engineering Research and Design, 193, 38–53 (2023) |
[11] | RAUF, A., SHEHZAD, S. A., ABBAS, Z., and HAYAT, T. Unsteady three-dimensional MHD flow of the micropolar fluid over an oscillatory disk with Cattaneo-Christov double diffusion. Applied Mathematics and Mechanics (English Edition), 40(10), 1471–1486 (2019) https://doi.org/10.1007/s10483-019-2530-6 |
[12] | ABBAS, Z., IMRAN, M., and NAVEED, M. Time-dependent flow of thermally developed viscous fluid over an oscillatory stretchable curved surface. Alexandria Engineering Journal, 59(6), 4377–4390 (2020) |
[13] | NAVEED, M., IMRAN, M., and ABBAS, Z. Curvilinear flow of micropolar fluid with Cattaneo-Christov heat flux model due to oscillation of curved stretchable sheet. Zeitschrift für Naturforschung A, 76(9), 799–821 (2021) |
[14] | IMRAN, M., NAVEED, M., and ABBAS, Z. Dynamics of Soret and Dufour effects on oscillatory flow of couple stress fluid due to stretchable curved surface. Advances in Mechanical Engineering, 15(2), 16878132231156742 (2023) |
[15] | WÖHLISCH, E. Adolf Fick und die heutige physiologie. Naturwissenschaften, 26(36), 585–591 (1938) |
[16] | FOURIER, J. B. J. Théorie Analytique de la Chaleur, Gauthier-Villars, Paris (1888) |
[17] | CATTANEO, C. Sulla conduzione del calore. Atti dei Seminari della Facoltà di Matematica, Fisica, Chimica e Geologia dell. Università di Modena, 3, 83–101 (1948) |
[18] | CHRISTOV, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communications, 36(4), 481–486 (2009) |
[19] | BILAL, S., SHAH, M. I., KHAN, N. Z., AKGÜL, A., and NISAR, K. S. Onset about non-isothermal flow of Williamson liquid over exponential surface by computing numerical simulation in perspective of Cattaneo Christov heat flux theory. Alexandria Engineering Journal, 61(8), 6139–6150 (2022) |
[20] | HAFEEZ, A. and KHAN, M. Flow of Oldroyd-B fluid caused by rotating disk featuring the Cattaneo-Christov theory with heat generation/absorption. International Communications in Heat and Mass Transfer, 123, 105179 (2021) |
[21] | IMRAN, M., ABBAS, Z., and NAVEED, M. Flow of Eyring-Powell liquid due to oscillatory stretchable curved sheet with modified Fourier and Fick's model. Applied Mathematics and Mechanics (English Edition), 42(10), 1461–1478 (2021) https://doi.org/10.1007/s10483-021-2779-9 |
[22] | FAROOQ, U., WAQAS, H., MAKKI, R., ALI, M. R., ALHUSHAYBARI, A., MUHAMMAD, T., and IMRAN, M. Computation of Cattaneo-Christov heat and mass flux model in Williamson nanofluid flow with bioconvection and thermal radiation through a vertical slender cylinder. Case Studies in Thermal Engineering, 42, 102736 (2023) |
[23] | MEHRYAN, S. A. M., IZADPANAHI, E., GHALAMBAZ, M., and CHAMKHA, A. J. Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu-Al2O3/water hybrid nanofluid. Journal of Thermal Analysis and Calorimetry, 137(3), 965–982 (2019) |
[24] | NADEEM, S., ABBAS, N., and MALIK, M. Y. Inspection of hybrid based nanofluid flow over a curved surface. Computer Methods and Programs in Biomedicine, 189, 105193 (2020) |
[25] | SAEED, A., ALGHAMDI, W., MUKHTAR, S., SHAH, S. I. A., KUMAM, P., GUL, T., NASIR, S., and KUMAM, W. Darcy-Forchheimer hybrid nanofluid flow over a stretching curved surface with heat and mass transfer. PLOS One, 16(5), e0249434 (2021) |
[26] | NAVEED, M., ALI, S., HASNAIN, J., and ABBAS, Z. Analysis of the effect of Joule heating and Hall current on flow of hybrid nanofluid over a curved stretching surface with melting boundary condition. Heat Transfer Research, 52(5), 1–16 (2021) |
[27] | IMRAN, M., NAVEED, M., IFTIKHAR, B., and ABBAS, Z. Heat transfer analysis in a curvilinear flow of hybrid nanoliquid across a curved oscillatory stretched surface with nonlinear thermal radiation. Zeitschrift für Angewandte Mathematik und Mechanik, 103(11), e202200600 (2023) |
[28] | RAMESH, K., WARKE, A. S., KOTECHA, K., and VAJRAVELU, K. Numerical and artificial neural network modelling of magnetorheological radiative hybrid nanofluid flow with Joule heating effects. Journal of Magnetism and Magnetic Materials, 570, 170552 (2023) |
[29] | XU, H. Mixed convective flow of a hybrid nanofluid between two parallel inclined plates under wall-slip condition. Applied Mathematics and Mechanics (English Edition), 43(1), 113–126 (2022) https://doi.org/10.1007/s10483-021-2801-6 |
[30] | ACHARYA, N., DAS, K., and KUNDU, P. K. Framing the effects of solar radiation on magneto-hydrodynamics bioconvection nanofluid flow in presence of gyrotactic microorganisms. Journal of Molecular Liquids, 222, 28–37 (2016) |
[31] | KHAN, W. A., MAKINDE, O. D., and KHAN, Z. H. MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip. International Journal of Heat and Mass Transfer, 74, 285–291 (2014) |
[32] | KHASHIE, N. S., ARFIN, N. M., POP, I., and NAZAR, R. Dual solutions of biconvective hybrid nanofluid flow due to gyrotactic microorganism towards a vertical plate. Chinese Journal of Physics, 72, 461–474 (2021) |
[33] | MUHAMMAD, M. Bioconvection and nonlinear thermal extrusion in development of chemically reactive Sutterby nano-material due to gyrotactic microorganisms. International Communications in Heat and Mass Transfer, 130, 105820 (2022) |
[34] | ALGEHYNE, E. A., SAEED, A., ARIF, M., BILAL, M., KUMAM, P., and GALAL, A. M. Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: numerical approach. Scientific Reports, 13(1), 13675 (2023) |
[35] | YASMIN, H., LONE, S. A., TASSADDIQ, A., RAIZAH, Z., ALRABAIAH, H., and SAEED, A. Numerical analysis of slip-enhanced flow over a curved surface with magnetized water-based hybrid nanofluid containing gyrotactic microorganisms. Scientific Reports, 13(1), 18816 (2023) |
[36] | ZUHRA, S., KHAN, N. S., SHAH, Z., ISLAM, S., and BONYAH, E. Simulation of bioconvection in the suspension of second grade nanofluid containing nanoparticles and gyrotactic microorganisms. Aip Advances, 8(10), 105210 (2018) |
[37] | KHAN, N. S., KUMAM, P., and THOUNTHONG, P. Renewable energy technology for the sustainable development of thermal system with entropy measures. International Journal of Heat and Mass Transfer, 145, 118713 (2019) |
[38] | KHAN, N. S., HUMPHRIES, U. W., KUMAM, W., KUMAM, P., and MUHAMMAD, T. Assessment of irreversibility optimization in Casson nanofluid flow with leading edge accretion or ablation. Zeitschrift für Angewandte Mathematik und Mechanik, 102(10), e202000207 (2022) |
[39] | KHAN, N. S., HUSSANAN, A., KUMAM, W., KUMAM, P., and SUTTIARPORN, P. Accessing the thermodynamics of Walter-B fluid with magnetic dipole effect past a curved stretching surface. Zeitschrift für Angewandte Mathematik und Mechanik, 103(8), e202100112 (2023) |
[40] | KHAN, N. S., HUMPHRIES, U. W., KUMAM, W., KUMAM, P., and MUHAMMAD, T. Dynamic pathways for the bioconvection in thermally activated rotating system. Biomass Conversion and Biorefinery, 14(7), 8605–8623 (2024) |
[41] | KHAN, N. S., SHAH, Q., SOHAIL, A., KUMAM, P., THOUNTHONG, P., and MUHAMMAD, T. Mechanical aspects of Maxwell nanofluid in dynamic system with irreversible analysis. Zeitschrift für Angewandte Mathematik und Mechanik, 101(12), e202000212 (2021) |
[42] | HAYAT, T., AYUB, T., MUHAMMAD, T., and ALSAEDI, A. Three-dimensional flow with Cattaneo-Christov double diffusion and homogeneous-heterogeneous reactions. Results in Physics, 7, 2812–2820 (2017) |
[43] | IMTIAZ, M., HAYAT, T., and ALSAEDI, A. Convective flow of ferrofluid due to a curved stretching surface with homogeneous-heterogeneous reactions. Powder Technology, 310, 154–162 (2017) |
[44] | HAMID, A. Numerical study of temperature dependent thermal conductivity and homogeneous-heterogeneous reactions on Williamson fluid flow. Journal of Physics Communications, 4(8), 085009 (2020) |
[45] | WAINI, I., ISHAK, A., and POP, I. Hybrid nanofluid flow with homogeneous-heterogeneous reactions. Computers, Materials & Continua, 68(3), 3255–3269 (2021) |
[46] | ABBAS, Z., IMRAN, M., and NAVEED, M. Impact of equally diffusive chemical reaction on time-dependent flow of Casson nanofluid due to oscillatory curved stretching surface with thermal radiation. Arabian Journal for Science and Engineering, 47(12), 16059–16078 (2022) |
[47] | LISHA, N. M., KUMAR, A. G. V., and SHAH, N. A. Numerical investigation of homogeneous-heterogeneous reactions in 3D MHD non-Newtonian hybrid nanofluid with heat source and shape factor in permeable media over a stretching sheet. Journal of Thermal Analysis and Calorimetry, 149, 6933–6954 (2023) |
[1] | S. U. KHAN, M. GARAYEV, ADNAN, K. RAMESH, M. EL MELIGY, D. ABDUVALIEVA, M. I. KHAN. Applications of variable thermal features for the bioconvective flow of Jeffrey nanofluids due to stretching surface with mass suction effects: Cattaneo-Christov model [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 391-. |
[2] | K. MUHAMMAD, M. SARFRAZ. Regression analysis of squeezing-induced hybrid nanofluid flow in Darcy-Forchheimer porous medium [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 193-208. |
[3] | A. S. JOHN, B. MAHANTHESH, G. LORENZINI. Study of hybrid nanofluid flow in a stationary cone-disk system with temperature-dependent fluid properties [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 677-694. |
[4] | L.I. KUZMINA, Y.V. OSIPOV, A.R. PESTEREV. Deep bed filtration model for cake filtration and erosion [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 355-372. |
[5] | Xiaodong GUO, Zhu SU, Lifeng WANG. Dynamic characteristics of multi-span spinning beams with elastic constraints under an axial compressive force [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 295-310. |
[6] | Jiawei MAO, Hao GAO, Junzhe ZHU, Penglin GAO, Yegao QU. Analytical modeling of piezoelectric meta-beams with unidirectional circuit for broadband vibration attenuation [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1665-1684. |
[7] | C. G. PAVITHRA, B. J. GIREESHA, M. L. KEERTHI. Semi-analytical investigation of heat transfer in a porous convective radiative moving longitudinal fln exposed to magnetic fleld in the presence of a shape-dependent trihybrid nanofluid [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 197-216. |
[8] | B. K. SHARMA, R. GANDHI, T. ABBAS, M. M. BHATTI. Magnetohydrodynamics hemodynamics hybrid nanofluid flow through inclined stenotic artery [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(3): 459-476. |
[9] | A. BAKHTIYARI, M. BAGHANI, S. SOHRABPOUR. An investigation on multilayer shape memory polymers under finite bending through nonlinear thermo-visco-hyperelasticity [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 73-88. |
[10] | A. M. ALSHARIF, A. I. ABDELLATEEF, Y. A. ELMABOUD, S. I. ABDELSALAM. Performance enhancement of a DC-operated micropump with electroosmosis in a hybrid nanofluid: fractional Cattaneo heat flux problem [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 931-944. |
[11] | Xiang MU, Xiaoyu FU, Liangliang ZHANG, Zhaowei ZHU, Jinming ZHANG, Yang GAO. Fundamental solutions of critical wedge angles for one-dimensional piezoelectric quasicrystal wedge [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(5): 709-728. |
[12] | N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Slip effects on unsteady mixed convection of hybrid nanofluid flow near the stagnation point [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 547-556. |
[13] | S. HUSSAIN, T. TAYEBI, T. ARMAGHANI, A. M. RASHAD, H. A. NABWEY. Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 447-466. |
[14] | I. WAINI, A. ISHAK, I. POP. Magnetohydrodynamic flow past a shrinking vertical sheet in a dusty hybrid nanofluid with thermal radiation [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 127-140. |
[15] | Hang XU. Mixed convective flow of a hybrid nanofluid between two parallel inclined plates under wall-slip condition [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 113-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||