Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (3): 447-466.doi: https://doi.org/10.1007/s10483-025-3228-7
Previous Articles Next Articles
Jufang JIA1, Huilin YIN2, Qinyu YU2, Jiabin SUN3, Xinsheng XU2, Zhenhuan ZHOU2,†()
Received:
2024-11-02
Revised:
2025-01-09
Published:
2025-03-03
Contact:
Zhenhuan ZHOU, E-mail: zhouzh@dlut.edu.cnSupported by:
2010 MSC Number:
Jufang JIA, Huilin YIN, Qinyu YU, Jiabin SUN, Xinsheng XU, Zhenhuan ZHOU. New analytical solutions for free vibration of embedded magneto-electro-elastic cylindrical shells with step-wise thickness variations. Applied Mathematics and Mechanics (English Edition), 2025, 46(3): 447-466.
Table 2
Comparison of natural frequencies (GHz) for an embedded MEE cylindrical shell with uniform thickness"
n | S-S | C-S | C-C | |||
---|---|---|---|---|---|---|
Ref. [ | Present | Ref. [ | Present | Ref. [ | Present | |
1 | 0.718 8 | 0.715 5 | 0.986 3 | 0.981 8 | 1.262 9 | 1.257 1 |
2 | 0.410 1 | 0.408 2 | 0.490 7 | 0.488 5 | 0.601 4 | 0.598 6 |
3 | 0.800 3 | 0.796 7 | 0.812 1 | 0.808 4 | 0.831 5 | 0.827 8 |
4 | 1.479 3 | 1.472 6 | 1.482 1 | 1.475 4 | 1.486 3 | 1.479 6 |
5 | 2.372 3 | 2.361 6 | 2.373 5 | 2.362 7 | 2.374 8 | 2.364 1 |
6 | 3.469 5 | 3.453 8 | 3.470 1 | 3.454 4 | 3.470 7 | 3.455 1 |
7 | 4.768 5 | 4.747 0 | 4.768 9 | 4.747 4 | 4.769 3 | 4.747 8 |
8 | 6.268 7 | 6.240 4 | 6.268 9 | 6.240 6 | 6.269 2 | 6.240 9 |
9 | 7.969 4 | 7.933 5 | 7.969 6 | 7.933 6 | 7.969 8 | 7.933 8 |
10 | 9.870 7 | 9.826 1 | 9.870 8 | 9.826 2 | 9.870 9 | 9.826 4 |
Table 3
Comparison of dimensionless frequencies Ω for an elastic 2-step cylindrical shell"
L/R | n | S-S | C-C | C-S | |||
---|---|---|---|---|---|---|---|
Ref. [ | Present | Ref. [ | Present | Ref. [ | Present | ||
1 | 1 | 0.549 333 | 0.549 340 | 0.851 020 | 0.851 023 | 0.839 591 | 0.839 594 |
2 | 0.622 456 | 0.622 464 | 0.657 085 | 0.657 089 | 0.656 497 | 0.656 501 | |
3 | 0.461 383 | 0.461 389 | 0.510 742 | 0.510 747 | 0.504 898 | 0.504 902 | |
4 | 0.342 895 | 0.342 899 | 0.409 108 | 0.409 113 | 0.396 288 | 0.396 291 | |
5 | 0.265 036 | 0.265 038 | 0.339 613 | 0.339 618 | 0.321 537 | 0.321 538 | |
6 | 0.220 569 | 0.220 571 | 0.294 328 | 0.294 333 | 0.273 013 | 0.273 015 | |
7 | 0.203 862 | 0.203 863 | 0.269 226 | 0.269 230 | 0.246 394 | 0.246 395 | |
8 | 0.208 817 | 0.208 817 | 0.261 750 | 0.261 755 | 0.238 499 | 0.238 500 | |
5 | 1 | 0.176 590 | 0.176 590 | 0.236 939 | 0.236 937 | 0.221 194 | 0.221 194 |
2 | 0.072 988 | 0.072 988 | 0.124 523 | 0.124 519 | 0.105 700 | 0.105 700 | |
3 | 0.041 159 | 0.041 159 | 0.073 567 | 0.073 564 | 0.059 344 | 0.059 344 | |
4 | 0.041 561 | 0.041 560 | 0.057 271 | 0.057 268 | 0.047 681 | 0.047 681 | |
5 | 0.053 819 | 0.053 819 | 0.062 517 | 0.062 515 | 0.054 198 | 0.054 198 | |
6 | 0.064 339 | 0.064 339 | 0.072 523 | 0.072 520 | 0.064 347 | 0.064 347 | |
7 | 0.077 950 | 0.077 950 | 0.083 824 | 0.083 821 | 0.077 951 | 0.077 951 | |
8 | 0.096 460 | 0.096 460 | 0.100 175 | 0.100 173 | 0.096 460 | 0.096 460 | |
10 | 1 | 0.056 538 | 0.056 537 | 0.097 703 | 0.097 659 | 0.082 455 | 0.082 436 |
2 | 0.020 750 | 0.020 749 | 0.041 392 | 0.041 361 | 0.032 011 | 0.032 001 | |
3 | 0.020 546 | 0.020 544 | 0.027 756 | 0.027 740 | 0.022 860 | 0.022 856 | |
4 | 0.029 146 | 0.029 144 | 0.033 748 | 0.033 732 | 0.029 148 | 0.029 146 | |
5 | 0.038 195 | 0.038 195 | 0.041 385 | 0.041 373 | 0.038 196 | 0.038 196 | |
6 | 0.052 000 | 0.051 999 | 0.053 611 | 0.053 604 | 0.052 000 | 0.051 999 | |
7 | 0.069 888 | 0.069 888 | 0.070 682 | 0.070 679 | 0.069 888 | 0.069 888 | |
8 | 0.091 165 | 0.091 165 | 0.091 582 | 0.091 580 | 0.091 165 | 0.091 165 |
Table 4
Natural frequencies (Hz) for 2-step MEE cylindrical shells under different boundary conditions"
n | C-C | C-S | S-S | |||
---|---|---|---|---|---|---|
1 | 62.312 6 | 62.334 8 | 48.490 2 | 48.490 6 | 35.000 3 | 35.000 7 |
2 | 25.381 3 | 25.739 3 | 18.515 7 | 19.115 5 | 13.004 7 | 13.662 3 |
3 | 19.124 5 | 22.739 7 | 15.671 9 | 20.962 7 | 15.186 7 | 19.874 8 |
4 | 24.249 9 | 37.164 2 | 21.608 6 | 36.786 7 | 21.603 8 | 36.560 6 |
5 | 32.312 5 | 59.024 0 | 30.967 3 | 58.913 2 | 30.967 3 | 58.640 5 |
6 | 44.517 4 | 86.279 9 | 43.897 0 | 86.234 8 | 43.897 0 | 86.200 0 |
7 | 60.087 8 | 118.614 1 | 59.785 9 | 118.590 8 | 59.785 9 | 118.571 0 |
8 | 78.505 9 | 155.961 3 | 78.344 3 | 155.947 3 | 78.344 3 | 155.934 8 |
Table 5
Natural frequencies (Hz) for 2-step MEE cylindrical shells with different L1/L2"
n | ||||||
---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | ||
1 | 62.312 5 | 136.676 6 | 222.777 8 | 311.008 1 | 395.612 5 | 471.043 2 |
2 | 25.144 2 | 62.252 3 | 109.927 2 | 163.524 6 | 219.857 3 | 276.294 4 |
3 | 16.703 0 | 35.354 5 | 61.883 0 | 94.501 0 | 131.363 8 | 170.631 5 |
4 | 21.112 0 | 31.930 7 | 46.652 1 | 64.611 9 | 88.443 5 | 115.341 5 |
5 | 30.582 1 | 36.736 2 | 49.370 9 | 62.577 0 | 73.132 1 | 90.680 3 |
6 | 43.640 2 | 46.751 3 | 54.432 9 | 67.179 1 | 82.852 9 | 90.740 4 |
7 | 59.592 8 | 61.340 4 | 65.700 2 | 73.720 5 | 85.640 1 | 100.794 5 |
8 | 78.179 5 | 79.336 5 | 82.027 2 | 87.012 6 | 94.841 3 | 105.662 7 |
Table 6
Natural frequencies (Hz) for 2-step MEE cylindrical shells with different h2/h1"
n | ||||||
---|---|---|---|---|---|---|
1 | 62.312 6 | 136.676 9 | 222.778 3 | 311.009 3 | 395.614 4 | 471.047 3 |
2 | 25.381 3 | 62.299 2 | 109.959 5 | 163.558 0 | 219.886 0 | 276.327 9 |
3 | 19.124 5 | 36.096 0 | 62.221 0 | 94.844 4 | 131.686 6 | 170.845 0 |
4 | 24.249 9 | 37.700 4 | 47.610 3 | 66.414 1 | 89.465 5 | 116.258 7 |
5 | 32.312 5 | 44.579 5 | 59.627 5 | 64.890 6 | 76.493 6 | 93.481 8 |
6 | 44.517 4 | 51.703 4 | 67.021 5 | 85.545 2 | 88.390 8 | 95.125 1 |
7 | 60.087 8 | 64.218 5 | 74.074 8 | 90.243 6 | 110.593 7 | 119.419 2 |
8 | 78.505 9 | 81.130 3 | 87.366 5 | 98.416 2 | 114.347 8 | 134.110 9 |
Table 7
Mode shapes and the corresponding frequencies (Hz) for 2-step MEE cylindrical shells with different L1/L2"
1 | 2 | 3 | 4 | 5 | 6 | |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Frequency | 78.179 5 | 79.336 5 | 82.027 2 | 87.012 6 | 94.841 3 | 105.662 7 |
1 | 2 | 3 | 4 | 5 | 6 | |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Frequency | 78.505 9 | 81.130 3 | 87.366 5 | 98.416 2 | 114.347 8 | 134.110 9 |
1 | 2 | 3 | 4 | 5 | 6 | |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Frequency | 79.772 7 | 88.061 8 | 106.096 3 | 132.673 7 | 156.114 5 | 157.227 6 |
Table 8
Mode shapes and the corresponding frequencies (Hz) for 2-step MEE cylindrical shells with different h2/h1"
1 | 2 | 3 | 4 | 5 | 6 | |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Frequency | 78.505 9 | 81.130 3 | 87.366 5 | 98.416 2 | 114.347 8 | 134.110 9 |
1 | 2 | 3 | 4 | 5 | 6 | |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Frequency | 155.961 3 | 156.575 7 | 157.693 0 | 159.438 9 | 161.963 9 | 165.424 2 |
1 | 2 | 3 | 4 | 5 | 6 | |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Frequency | 156.614 3 | 159.536 0 | 165.437 3 | 175.262 3 | 189.553 7 | 208.265 8 |
Table 9
Natural frequencies (Hz) for a 3-step MEE cylindrical shell"
n | m | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
1 | 62.407 2 | 136.820 0 | 222.943 2 | 311.181 8 | 395.818 2 | 471.294 7 |
2 | 26.609 1 | 63.489 2 | 110.927 6 | 164.484 5 | 220.926 2 | 277.475 2 |
3 | 28.170 5 | 47.279 3 | 70.455 5 | 100.479 1 | 136.816 5 | 175.670 4 |
4 | 43.335 6 | 63.282 6 | 79.294 5 | 90.163 6 | 109.734 6 | 134.334 2 |
5 | 63.144 9 | 80.821 7 | 107.765 4 | 121.746 1 | 126.366 5 | 139.605 6 |
6 | 88.994 0 | 101.456 5 | 126.082 6 | 157.243 6 | 175.004 2 | 177.386 2 |
7 | 120.624 1 | 129.457 3 | 148.041 6 | 176.034 8 | 209.400 1 | 237.244 1 |
8 | 157.638 7 | 164.470 0 | 178.537 4 | 200.859 0 | 230.349 1 | 264.387 7 |
Table 10
Mode shapes and the corresponding frequencies (Hz) for 3-step MEE cylindrical shells with different h2/h1"
1 | 2 | 3 | 4 | 5 | 6 | |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Frequency | 79.324 6 | 85.635 9 | 99.712 3 | 121.198 1 | 145.753 2 | 157.433 6 |
1 | 2 | 3 | 4 | 5 | 6 | |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Frequency | 155.961 3 | 156.575 7 | 157.693 0 | 159.438 9 | 161.963 9 | 165.424 2 |
1 | 2 | 3 | 4 | 5 | 6 | |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Frequency | 157.955 3 | 165.998 3 | 182.505 3 | 208.373 3 | 242.116 4 | 280.684 7 |
[1] | SEZER, N. and KOÇ, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy, 80, 105567 (2021) |
[2] | ZHOU, S., LALLART, M., and ERTURK, A. Multistable vibration energy harvesters: principle, progress, and perspectives. Journal of Sound and Vibration, 528, 116886 (2022) |
[3] | HURTADO, A. C., PERALTA, P., RUIZ, R. O., ALAMDARI, M. M., and ATROSHCHENKO, E. Shape optimization of piezoelectric energy harvesters of variable thickness. Journal of Sound and Vibration, 517, 116503 (2022) |
[4] | YILDIRIM, T., GHAYESH, M. H., LI, W., and ALICI, G. A review on performance enhancement techniques for ambient vibration energy harvesters. Renewable and Sustainable Energy Reviews, 71, 435–449 (2017) |
[5] | SAVARIMUTHU, K., SANKARARAJAN, R., ALSATH, M. G. N., and ROJI, M. A. M. Design and analysis of cantilever based piezoelectric vibration energy harvester. Circuit World, 44(2), 78–86 (2018) |
[6] | HOSSEINI, R. and NOURI, M. Shape design optimization of unimorph piezoelectric cantilever energy harvester. Applied and Computational Mechanics, 47(2), 247–259 (2016) |
[7] | KAN, J., LIAO, W., WANG, J., WANG, S., YAN, M., JIANG, Y., and ZHANG, Z. Enhanced piezoelectric wind-induced vibration energy harvester via the interplay between cylindrical shell and diamond-shaped baffle. Nano Energy, 89, 106466 (2021) |
[8] | MEI, J. and LI, L. Double-wall piezoelectric cylindrical energy harvester. Sensors and Actuators A: Physical, 233, 405–413 (2015) |
[9] | LI, X., CHUANG, K., and TZOU, H., Energy harvesting using a circular cylindrical shell laminated with a segmented piezoelectric layer. Proceedings of the 2010 Symposium on Piezoelectricity, Acoustic Waves and Device Applications, Xiamen, 139–144 (2010) |
[10] | LI, C., ZHU, C. X., ZHANG, N., SUI, S. H., and ZHAO, J. B. Free vibration of self-powered nanoribbons subjected to thermal-mechanical-electrical fields based on a nonlocal strain gradient theory. Applied Mathematical Modelling, 110, 583–602 (2022) |
[11] | WANG, X., WANG, G., CHEN, Z., LIM, C. W., LI, S., and LI, C. Controllable flexural wave in laminated metabeam with embedded multiple resonators. Journal of Sound and Vibration, 581, 118386 (2024) |
[12] | LI, C., ZHU, C. X., LIM, C. W., and LI, S. Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading. Applied Mathematics and Mechanics(English Edition), 43(12), 1821–1840 (2022) https://doi.org/10.1007/s10483-022-2917-7 |
[13] | DONG, B., ZHAO, R., and YU, K. Nonlinear combined harmonic resonances of composite cylindrical shells operating in hygro-thermo-electro-magneto-mechanical fields. Composite Structures, 331, 117877 (2024) |
[14] | LI, H. N., WANG, W., LAI, S. K., YAO, L. Q., and LI, C. Nonlinear vibration and stability analysis of rotating functionally graded piezoelectric nanobeams. International Journal of Structural Stability and Dynamics, 24(9), 2450103 (2024) |
[15] | WANG, X., YE, T., JIN, G., CHEN, Y., YANG, Y., and LIU, Z. A multi-physics coupling formulation for vibro-acoustic analysis of FGMEE plates. International Journal of Mechanical Sciences, 269, 109060 (2024) |
[16] | JIN, H. J., SUI, S. H., ZHU, C. X., and LI, C. Axial free vibration of rotating FG piezoelectric nano-rods accounting for nonlocal and strain gradient effects. Journal of Vibration Engineering & Technologies, 11, 537–549 (2023) |
[17] | ZHANG, S. Q., ZHAO, G. Z., RAO, M. N., SCHMIDT, R., and YU, Y. J. A review on modeling techniques of piezoelectric integrated plates and shells. Journal of Intelligent Material Systems and Structures, 30(8), 1133–1147 (2019) |
[18] | FANG, X. Q., LIU, J. X., and GUPTA, V. Fundamental formulations and recent achievements in piezoelectric nano-structures: a review. Nanoscale, 5(5), 1716–1726 (2013) |
[19] | VIYAS, M. Computational analysis of smart magneto-electro-elastic materials and structures: review and classification. Archives of Computational Methods in Engineering, 28(3), 1205–1248 (2021) |
[20] | FENG, X., KE, L. L., and GAO, Y. Love wave propagation in one-dimensional piezoelectric quasicrystal multilayered nanoplates with surface effects. Applied Mathematics and Mechanics(English Edition), 45(4), 619–632 (2024) https://doi.org/10.1007/s10483-024-3104-9 |
[21] | LI, Z., FAN, C. Y., GUO, M. K., QIN, G. S., LU, C. S., LIU, D. Y., and ZHAO, M. H. Natural frequency analysis of laminated piezoelectric beams with arbitrary polarization directions. Applied Mathematics and Mechanics(English Edition), 45(11), 1949–1964 (2024) https://doi.org/10.1007/s10483-024-3182-9 |
[22] | FANG, X. Q., HE, Q. L., MA, H. W., and ZHU, C. S. Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate. Applied Mathematics and Mechanics(English Edition), 44(8), 1351–1366 (2023) https://doi.org/10.1007/s10483-023-3017-6 |
[23] | GANESAN, N. and SIVADAS, K. R. Free vibration of cantilever circular cylindrical shells with variable thickness. Computers & Structures, 34(4), 669–677 (1990) |
[24] | SIVADAS, K. R. and GANESAN, N. Free vibration of circular cylindrical shells with axially varying thickness. Journal of Sound and Vibration, 147(1), 73–85 (1991) |
[25] | EL-KAABAZI, N. and KENNEDY, D. Calculation of natural frequencies and vibration modes of variable thickness cylindrical shells using the Wittrick-Williams algorithm. Computers & Structures, 104-105, 4–12 (2012) |
[26] | GANESAN, N. and SIVADAS, K. R. Vibration analysis of orthotropic shells with variable thickness. Computers & Structures, 35(3), 239–248 (1990) |
[27] | QUOC, T. H., HUAN, D. T., and PHUONG, H. T. Vibration characteristics of rotating functionally graded circular cylindrical shell with variable thickness under thermal environment. International Journal of Pressure Vessels and Piping, 193, 104452 (2021) |
[28] | VISWANATHAN, K. K., KIM, K. S., LEE, J. H., LEE, C. H., and LEE, J. B. Axisymmetric vibrations of layered cylindrical shells of variable thickness using spline function approximation. Structural Engineering and Mechanics, 28, 749–765 (2008) |
[29] | VISWANATHAN, K. K., KIM, K. S., LEE, K. H., and LEE, J. H. Free vibration of layered circular cylindrical shells of variable thickness using spline function approximation. Mathematical Problems in Engineering, 2010, 547956 (2010) |
[30] | VISWANATHAN, K. K., LEE, J. H., AZIZ, Z. A., and HOSSAIN, I. Free vibration of symmetric angle-ply laminated cylindrical shells of variable thickness. Acta Mechanica, 221(3), 309–319 (2011) |
[31] | JAVED, S., VISWANATHAN, K. K., and AZIZ, Z. A. Free vibration analysis of composite cylindrical shells with non-uniform thickness walls. Steel and Composite Structures, 20(5), 1087–1102 (2016) |
[32] | SIVADAS, K. R. and GANESAN, N. Asymmetric vibration analysis of thick composite circular cylindrical shells with variable thickness. Computers and Structures, 38(5), 627–635 (1991) |
[33] | TAKAHASHI, S., SUZUKI, K., KOSAWADA, T., and ANZAI, E. Vibrations of cylindrical shells with varying thickness. Bulletin of JSME, 24(196), 1826–1836 (1981) |
[34] | DUAN, W. H. and KOH, C. G. Axisymmetric transverse vibrations of circular cylindrical shells with variable thickness. Journal of Sound and Vibration, 317(3), 1035–1041 (2008) |
[35] | TAATI, E., FALLAH, F., and AHMADIAN, M. T. Closed-form solution for free vibration of variable-thickness cylindrical shells rotating with a constant angular velocity. Thin-Walled Structures, 166, 108062 (2021) |
[36] | SUZUKI, K., KONNO, M., and TAKAHASHI, S. Axisymmetric vibrations of a cylindrical shell with varying thickness. Bulletin of JSME, 24(198), 2122–2132 (1981) |
[37] | GRIGORENKO, A. Y., EFIMOVA, T. L., and SOKOLOVA, L. V. On one approach to studying free vibrations of cylindrical shells of variable thickness in the circumferential direction within a refined statement. Journal of Mathematical Sciences, 171(4), 548–563 (2010) |
[38] | AHMED, M. K. Natural frequencies and mode shapes of variable thickness elastic cylindrical shells resting on a Pasternak foundation. Journal of Vibration and Control, 22(1), 37–50 (2014) |
[39] | ZHENG, D., DU, J., and LIU, Y. Vibration characteristics analysis of an elastically restrained cylindrical shell with arbitrary thickness variation. Thin-Walled Structures, 165, 107930 (2021) |
[40] | ZHANG, L. and XIANG, Y. Exact solutions for vibration of stepped circular cylindrical shells. Journal of Sound and Vibration, 299(4), 948–964 (2007) |
[41] | LELLEP, J. and ROOTS, L. Axisymmetric vibrations of stepped cylindrical shells made of composite materials. Mechanics of Composite Materials, 49(2), 171–180 (2013) |
[42] | QU, Y. G., CHEN, Y., LONG, X. H., HUA, H. X., and MENG, G. Free and forced vibration analysis of uniform and stepped circular cylindrical shells using a domain decomposition method. Applied Acoustics, 74(3), 425–439 (2013) |
[43] | CHEN, M., XIE, K., XU, K., and YU, P. Wave based method for free and forced vibration analysis of cylindrical shells with discontinuity in thickness. Journal of Vibration and Acoustics, 137(5), 051004 (2015) |
[44] | POULTANGARI, R. and NIKKHAH-BAHRAMI, M. Free and forced vibration analysis of stepped circular cylindrical shells with several intermediate supports using an extended wave method: a generalized approach. Latin American Journal of Solids and Structures, 13(11), 2027–2058 (2016) |
[45] | TANG, D., YAO, X. L., WU, G. X., and PENG, Y. Free and forced vibration analysis of multi-stepped circular cylindrical shells with arbitrary boundary conditions by the method of reverberation-ray matrix. Thin-Walled Structures, 116, 154–168 (2017) |
[46] | JIA, J., LAI, A., LI, T., ZHOU, Z., XU, X., and LIM, C. W. A symplectic analytical approach for free vibration of orthotropic cylindrical shells with stepped thickness under arbitrary boundary conditions. Thin-Walled Structures, 171, 108696 (2022) |
[47] | LI, H. C., PANG, F. Z., MIAO, X. H., and LI, Y. H. Jacobi-Ritz method for free vibration analysis of uniform and stepped circular cylindrical shells with arbitrary boundary conditions: a unified formulation. Computers and Mathematics with Applications, 77(2), 427–440 (2019) |
[48] | GUO, C., LIU, T., WANG, Q., QIN, B., and WANG, A. A unified strong spectral Tchebychev solution for predicting the free vibration characteristics of cylindrical shells with stepped-thickness and internal-external stiffeners. Thin-Walled Structures, 168, 108307 (2021) |
[49] | KHALIFA, A. M. Exact solutions for the vibration of circumferentially stepped orthotropic circular cylindrical shells. Comptes Rendus Mécanique, 339(11), 708–718 (2011) |
[50] | MESHKINZAR, A., AL-JUMAILY, A. M., and HARRIS, P. D. Acoustic amplification utilizing stepped-thickness piezoelectric circular cylindrical shells. Journal of Sound and Vibration, 437, 110–118 (2018) |
[51] | AL-JUMAILY, A. M., MESHKINZAR, A., HARRIS, P. D., and HUANG, L. Acoustic radiation characteristics of piezoelectric shells with internal and external axial stepped-thickness configurations. Sensors and Actuators A: Physical, 302, 111819 (2020) |
[52] | MESHKINZAR, A. and AL-JUMAILY, A. M. Vibration and acoustic radiation characteristics of cylindrical piezoelectric transducers with circumferential steps. Journal of Sound and Vibration, 511, 116346 (2021) |
[53] | ANNIGERI, A. R., GANESAN, N., and SWARNAMANI, S. Free vibrations of clamped-clamped magneto-electro-elastic cylindrical shells. Journal of Sound and Vibration, 292(1), 300–314 (2006) |
[54] | ANNIGERI, A. R., GANESAN, N., and SWARNAMANI, S. Free vibrations of simply supported layered and multiphase magneto-electro-elastic cylindrical shells. Smart Materials and Structures, 15(2), 459–467 (2006) |
[55] | BHANGALE, R. K. and GANESAN, N. Free vibration of functionally graded non-homogeneous magneto-electro-elastic cylindrical shell. International Journal for Computational Methods in Engineering Science and Mechanics, 7(3), 191–200 (2006) |
[56] | BHANGALE, R. K. and GANESAN, N. Free vibration studies of simply supported non-homogeneous functionally graded magneto-electro-elastic finite cylindrical shells. Journal of Sound and Vibration, 288(1), 412–422 (2005) |
[57] | ZHANG, L. and LI, X. W. Buckling and vibration analysis of functionally graded magneto-electro-thermo-elastic circular cylindrical shells. Applied Mathematical Modelling, 37(4), 2279–2292 (2013) |
[58] | GHADIRI, M. and SAFARPOUR, H. Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory. Applied Physics A, 122(9), 833 (2016) |
[59] | SHOJAEEFARD, M. H., MAHINZARE, M., SAFARPOUR, H., GOOGARCHIN, H. S., and GHADIRI, M. Free vibration of an ultra-fast-rotating-induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition. Applied Mathematical Modelling, 61, 255–279 (2018) |
[60] | KE, L. L., WANG, Y. S., YANG, J., and KITIPORNCHAI, S. The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells. Smart Materials and Structures, 23(12), 125036 (2014) |
[61] | MOHAMMADIMEHR, M., ARSHID, E., ALHOSSEINI, S. M. A. R., AMIR, S., and ARANI, M. R. G. Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation. Structural Engineering and Mechanics, 70(6), 683–702 (2019) |
[62] | MOHAMMADIMEHR, M. and ROSTAMI, R. Bending and vibration analyses of a rotating sandwich cylindrical shell considering nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields. Applied Mathematics and Mechanics(English Edition), 39(2), 219–240 (2018) https://doi.org/10.1007/s10483-018-2301-6 |
[63] | YE, W. B., LIU, J., ZANG, Q. S., and LIN, G. Magneto-electro-elastic semi-analytical models for free vibration and transient dynamic responses of composite cylindrical shell structures. Mechanics of Materials, 148, 103495 (2020) |
[64] | WANG, X. T., LIU, J., HU, B., ZHANG, B., and SHEN, H. M. Wave propagation responses of porous bi-directional functionally graded magneto-electro-elastic nanoshells via nonlocal strain gradient theory. Applied Mathematics and Mechanics(English Edition), 44(10), 1821–1840 (2023) https://doi.org/10.1007/s10483-023-3043-7 |
[65] | LIM, C. W. and XU, X. S. Symplectic elasticity: theory and applications. Applied Mechanics Reviews, 63(5), 050802 (2011) |
[66] | JIA, J. F., LAI, A. D., QU, J. L., ZHAO, J. Y., SUN, J. B., ZHOU, Z. H., XU, X. S., and LIM, C. W. Effects of local thinning defects and stepped thickness for free vibration of cylindrical shells using a symplectic exact solution approach. Acta Astronautica, 178, 658–671 (2021) |
[67] | NI, Y. W., ZHU, S. B., SUN, J. B., TONG, Z. Z., ZHOU, Z. H., XU, X. S., and LIM, C. W. An accurate model for free vibration of porous magneto-electro-thermo-elastic functionally graded cylindrical shells subjected to multi-field coupled loadings. Journal of Intelligent Material Systems and Structures, 32(17), 2006–2023 (2021) |
[68] | WANG, W., QI, Q. S., ZHANG, J. L., WANG, Z. K., SUN, J. B., ZHOU, Z. H., and XU, X. S. A size-dependent electro-mechanical buckling analysis of flexoelectric cylindrical nanoshells. Thin-Walled Structures, 202, 112118 (2024) |
[69] | WANG, W., YIN, H., YU, Q., WANG, Z., SUN, J. B., ZHOU, Z. Z., and XU, X. S. Torsion stability analysis of functionally graded piezoelectric cylindrical shell with flexoelectric effect. Thin-Walled Structures, 208, 112820 (2025) |
[70] | XU, C. H., LENG, S., ZHOU, Z. H., XU, X. S., and DENG, Z. C. Accurate and straightforward symplectic approach for fracture analysis of fractional viscoelastic media. Applied Mathematics and Mechanics(English Edition), 43(3), 403–416 (2022) https://doi.org/10.1007/s10483-022-2825-8 |
[71] | ZHAO, Y. P., HOU, X. H., ZHANG, K., and DENG, Z. C. Symplectic analysis for regulating wave propagation in a one-dimensional nonlinear graded metamaterial. Applied Mathematics and Mechanics(English Edition), 44(5), 745–758 (2023) https://doi.org/10.1007/s10483-023-2985-6 |
[72] | XU, D., ZHENG, X. R., AN, D. Q., ZHOU, C., HUANG, X. W., and LI, R. New analytic solutions to 2D transient heat conduction problems with/without heat sources in the symplectic space. Applied Mathematics and Mechanics(English Edition), 43(8), 1233–1248 (2022) https://doi.org/10.1007/s10483-022-2896-6 |
[73] | LEISSA, A. W. Vibration of Shells, Scientific and Technical Information Office, National Aeronautics and Space Administration (1973) |
[1] | M. NAVEED, M. IMRAN, T. ASGHAR, Z. ABBAS. Transport mechanism in chemically reactive hybrid nanofluidflow containing gyrotactic micro-organisms overa curved oscillatory surface [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 177-192. |
[2] | Jie CHEN, Xinyue ZHANG, Mingyang FAN. Dynamic behaviors of graphene platelets-reinforced metal foam piezoelectric beams with velocity feedback control [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 63-80. |
[3] | Wei CHEN, Zhihong TANG, Yufen LIAO, Linxin PENG. A six-variable quasi-3D isogeometric approach for free vibration of functionally graded graphene origami-enabled auxeticmetamaterial plates submerged in a fluid medium [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 157-176. |
[4] | Xiaoyang SU, Tong HU, Wei ZHANG, Houjun KANG, Yunyue CONG, Quan YUAN. Transfer matrix method for free and forced vibrations of multi-level functionally graded material stepped beams with different boundary conditions [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 983-1000. |
[5] | S. JAHANGIRI, A. GHORBANPOUR ARANI, Z. KHODDAMI MARAGHI. Dynamics of a rotating ring-stiffened sandwich conical shell with an auxetic honeycomb core [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 963-982. |
[6] | H.M. FEIZABAD, M.H. YAS. Free vibration and buckling analysis of polymeric composite beams reinforced by functionally graded bamboo fibers [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 543-562. |
[7] | L.I. KUZMINA, Y.V. OSIPOV, A.R. PESTEREV. Deep bed filtration model for cake filtration and erosion [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 355-372. |
[8] | Xiaodong GUO, Zhu SU, Lifeng WANG. Dynamic characteristics of multi-span spinning beams with elastic constraints under an axial compressive force [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 295-310. |
[9] | Zhi LI, Cuiying FAN, Mingkai GUO, Guoshuai QIN, Chunsheng LU, Dongying LIU, Minghao ZHAO. Natural frequency analysis of laminated piezoelectric beams with arbitrary polarization directions [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1949-1964. |
[10] | Jiawei MAO, Hao GAO, Junzhe ZHU, Penglin GAO, Yegao QU. Analytical modeling of piezoelectric meta-beams with unidirectional circuit for broadband vibration attenuation [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1665-1684. |
[11] | Xueqian FANG, Qilin HE, Hongwei MA, Changsong ZHU. Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1351-1366. |
[12] | U. N. ARIBAS, M. AYDIN, M. ATALAY, M. H. OMURTAG. Cross-sectional warping and precision of the first-order shear deformation theory for vibrations of transversely functionally graded curved beams [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2109-2138. |
[13] | Changsong ZHU, Xueqian FANG, Jinxi LIU. Nonlinear free vibration of piezoelectric semiconductor doubly-curved shells based on nonlinear drift-diffusion model [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1761-1776. |
[14] | Lingkang ZHAO, Peijun WEI, Yueqiu LI. Free vibration of thermo-elastic microplate based on spatiotemporal fractional-order derivatives with nonlocal characteristic length and time [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 109-124. |
[15] | A. BAKHTIYARI, M. BAGHANI, S. SOHRABPOUR. An investigation on multilayer shape memory polymers under finite bending through nonlinear thermo-visco-hyperelasticity [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 73-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||