Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (8): 1451-1474.doi: https://doi.org/10.1007/s10483-025-3285-8
Previous Articles Next Articles
N. A. SAEED1,2,3, Y. Y. ELLABBAN4, Lei HOU2,†(), Haiming YI2, Shun ZHONG5, F. Z. DURAIHEM6, O. M. OMARA1
Received:
2025-04-10
Revised:
2025-06-23
Published:
2025-07-28
Contact:
Lei HOU, E-mail: houlei@hit.edu.cnSupported by:
2010 MSC Number:
N. A. SAEED, Y. Y. ELLABBAN, Lei HOU, Haiming YI, Shun ZHONG, F. Z. DURAIHEM, O. M. OMARA. Nonlinear vibration of quasi-zero stiffness structure with piezoelectric harvester and RL-load: intra-well and inter-well oscillation modes under 1:1 internal resonance. Applied Mathematics and Mechanics (English Edition), 2025, 46(8): 1451-1474.
Fig. 2
(a) Bistable and monostable boundaries of considered quasi-zero mechanical oscillator in βγ-space. (b) Equilibrium point bifurcation of autonomous unperturbed oscillator. Phase space scenarios of autonomous unperturbed oscillator at different values of β when γ=1.0: (c) bistable oscillation scenario; (d) critical oscillation scenario; (e) monostable oscillation scenario (color online)"
Fig. 6
Influence of β and γ and dynamical behaviors of QZS system for F=0.015: (a) oscillation amplitude and (b) corresponding displacement transmissibility for γ=1.0; (c) vibration isolation region in Ωβ-space for γ=1.0; (d) oscillation amplitude and (e) corresponding displacement transmissibility for β=0.8; (f) vibration isolation region in Ωγ-space for β=0.8 (color online)"
Fig. 17
Time-response curves of oscillator-harvester system corresponding to Fig. 16 for F=0.025 and Ω=0.5: (a)–(b) intra-well and inter-well oscillation modes of mechanical oscillator, depending on initial conditions; (c)–(d) corresponding low- and high-amplitude harvested voltage (color online)"
Fig. 22
Bifurcation diagrams and steady-sate phase plane trajectories of oscillator-harvester system corresponding to Fig. 21 for Ω=1.25: (a) bifurcation diagram; (b)–(c) chaotic responses of oscillator-harvester system for Ω=1.25. Legends of (b) and (c) are as follows. Red lines: F=0.050; green lines: F=0.075; blue lines: F=0.100; purple lines: F=0.125; black lines: F=0.150 (color online)"
[1] | IBRAHIM, R. Recent advances in nonlinear passive vibration isolators. Journal of Sound and Vibration, 314(3-5), 371–452 (2008) |
[2] | LIU, C., JING, X., DALEY, S., and LI, F. Recent advances in micro-vibration isolation. Mechanical Systems and Signal Processing, 56-57, 55–80 (2015) |
[3] | ZENG, R., WEN, G., ZHOU, J., YIN, S., WANG, Q., and WU, X. Experimental investigation of a non-smooth quasi-zero-stiffness isolator. Acta Mechanica Sinica, 39(6), 522415 (2023) |
[4] | LING, P., MIAO, L., YE, B., YOU, J., ZHANG, W., and YAN, B. Ultra-low frequency vibration isolation of a novel click-beetle-inspired structure with large quasi-zero stiffness region. Journal of Sound and Vibration, 558, 117756 (2023) |
[5] | LIU, C., ZHANG, W., YU, K., LIU, T., and ZHENG, Y. Quasi-zero-stiffness vibration isolation: designs, improvements and applications. Engineering Structures, 301, 117282 (2024) |
[6] | WANG, K., ZHOU, J., TAN, D., LI, Z., LIN, Q., and XU, D. A brief review of metamaterials for opening low-frequency band gaps. Applied Mathematics and Mechanics (English Edition), 43(7), 1125–1144 (2022) https://doi.org/10.1007/s10483-022-2870-9 |
[7] | SAEED, N. A. and EISSA, M. Bifurcation analysis of a transversely cracked nonlinear Jeffcott rotor system at different resonance cases. International Journal of Acoustics and Vibration, 24(2), 284–302 (2019) |
[8] | SAEED, N. A., MOATIMID, G. M., ELSABAA, F. M. F., and ELLABBAN, Y. Y. Time-delayed control to suppress a nonlinear system vibration utilizing the multiple scales homotopy approach. Archive of Applied Mechanics, 91, 1193–1215 (2021) |
[9] | EISSA, M., KAMEL, M., SAEED, N. A., EL-GANAINI, W., and EL-GOHARY, H. Time-delayed positive-position and velocity feedback controller to suppress the lateral vibrations in nonlinear Jeffcott-rotor system. Menoufia Journal of Electronic Engineering Research, 27, 261–278 (2018) |
[10] | SAEED, N. A., MOHAMED, M. S., ELAGAN, S. K., and AWREJCEWICZ, J. Integral resonant controller to suppress the nonlinear oscillations of a two-degree-of-freedom rotor active magnetic bearing system. Processes, 10, 271 (2022) |
[11] | SAEED, N. A., MOATIMID, G. M., ELSABAA, F. M., ELLABBAN, Y. Y., ELAGAN, S. K., and MOHAMED, M. S. Time-delayed nonlinear integral resonant controller to eliminate the nonlinear oscillations of a parametrically excited system. IEEE Access, 9, 74836–74854 (2021) |
[12] | EL-SHOURBAGY, S. M., SAEED, N. A., KAMEL, M., RASLAN, K. R., ABOUEL NASR, E., and AWREJCEWICZ, J. On the performance of a nonlinear position-velocity controller to stabilize rotor-active magnetic-bearings system. Symmetry, 13, 2069 (2021) |
[13] | SAEED, N. A., EL-BENDARY, S., SAYED, M., MOHAMED, M., and ELAGAN, S. On the oscillatory behaviours and rub-impact forces of a horizontally supported asymmetric rotor system under position-velocity feedback controller. Latin American Journal of Solids and Structures, 18(2), e349 (2021) |
[14] | SAEED, N. A., AWREJCEWICZ, J., HAFEZ, S. T., HOU, L., and ABOUDAIF, M. K. Stability, bifurcation, and vibration control of a discontinuous nonlinear rotor model under rub-impact effect. Nonlinear Dynamics, 111, 20661–20697 (2023) |
[15] | ERTURK, A. and INMAN, D. J. Piezoelectric Energy Harvesting, John Wiley & Sons, Hoboken (2011) |
[16] | OTTMAN, G., HOFMANN, H., BHATT, A., and LESIEUTRE, G. Adaptive piezoelectric energy harvesting circuit for wireless, remote power supply. IEEE Transactions on Power Electronics, 17(5), 669–676 (2002) |
[17] | COOK-CHENNAULT, K. A., THAMBI, N., and SASTRY, A. M. Powering MEMS portable devices — a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Materials and Structures, 17(4), 043001 (2008) |
[18] | ABDELKAREEM, M. A. A., XU, L., ALI, M. K. A., ELAGOUZ, A., MI, J., GUO, S., LIU, Y., and ZUO, L. Vibration energy harvesting in automotive suspension system: a detailed review. Applied Energy, 229, 672–699 (2018) |
[19] | PUTRA, T., HUSAINI, and IKBAL, M. Automotive suspension component behaviors driven on flat and rough road surfaces. Heliyon, 7(7), e07528 (2021) |
[20] | ZHOU, S., SONG, G., WANG, R., REN, Z., and WEN, B. Nonlinear dynamic analysis for coupled vehicle-bridge vibration system on nonlinear foundation. Mechanical Systems and Signal Processing, 87, 259–278 (2017) |
[21] | ZUO, J., DONG, L., YANG, F., GUO, Z., WANG, T., and ZUO, L. Energy harvesting solutions for railway transportation: a comprehensive review. Renewable Energy, 202, 56–87 (2023) |
[22] | GHOLIKHANI, M., ROSHANI, H., DESSOUKY, S., and PAPAGIANNAKIS, A. T. A critical review of roadway energy harvesting technologies. Applied Energy, 261, 114388 (2020) |
[23] | LEI, S., GE, Y., LI, Q., and THOMPSON, D. J. Frequency-domain method for non-stationary stochastic vibrations of train-bridge coupled system with time-varying characteristics. Mechanical Systems and Signal Processing, 183, 109637 (2023) |
[24] | CAHILL, P., HAZRA, B., KAROUMI, R., MATHEWSON, A., and PAKRASHI, V. Vibration energy harvesting-based monitoring of an operational bridge undergoing forced vibration and train passage. Mechanical Systems and Signal Processing, 106, 265–283 (2018) |
[25] | YANG, K., ABDELKEFI, A., LI, X., MAO, Y., DAI, L., and WANG, J. Stochastic analysis of a galloping-random wind energy harvesting performance on a buoy platform. Energy Conversion and Management, 238, 114174 (2021) |
[26] | BAO, B., ZHOU, S., and WANG, Q. Interplay between internal resonance and nonlinear magnetic interaction for multi-directional energy harvesting. Energy Conversion and Management, 244, 114465 (2021) |
[27] | ABOHAMER, M. K., AWREJCEWICZ, J., STAROSTA, R., AMER, T. S., and BEK, M. A. Influence of the motion of a spring pendulum on energy-harvesting devices. Applied Sciences, 11(18), 8658 (2021) |
[28] | AMER, T. S., WAHBA, A. M., ABOLILA, A. F., and GALAL, A. A. Optimizing stability and characteristics of a vibrating rigid body pendulum with energy harvesting device. Journal of Low Frequency Noise, Vibration and Active Control, 44(2), 893–937 (2025) |
[29] | ABOHAMER, M. K., AWREJCEWICZ, J., and AMER, T. S. Modeling of the vibration and stability of a dynamical system coupled with an energy harvesting device. Alexandria Engineering Journal, 63, 377–397 (2023) |
[30] | GU, Y., LIU, W., ZHAO, C., and WANG, P. A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting. Applied Energy, 266, 114846 (2020) |
[31] | ZHAO, L., ZOU, H., ZHAO, Y., WU, Z., LIU, F., WEI, K., and ZHANG, W. Hybrid energy harvesting for self-powered rotor condition monitoring using maximal utilization strategy in structural space and operation process. Applied Energy, 314, 118983 (2022) |
[32] | LAI, Z., WANG, S., ZHU, L., ZHANG, G., WANG, J., YANG, K., and YURCHENKO, D. A hybrid piezo-dielectric wind energy harvester for high-performance vortex-induced vibration energy harvesting. Mechanical Systems and Signal Processing, 150, 107212 (2021) |
[33] | SUN, W., JIANG, Z., XU, X., HAN, Q., and CHU, F. Harmonic balance analysis of output characteristics of free-standing mode triboelectric nanogenerators. International Journal of Mechanical Sciences, 207, 106668 (2021) |
[34] | ZOU, H., ZHAO, L., WANG, Q., GAO, Q., YAN, G., WEI, K., and ZHANG, W. A self-regulation strategy for triboelectric nanogenerator and self-powered wind-speed sensor. Nano Energy, 95, 106990 (2022) |
[35] | AMER, T. S., ARAB, A., and GALAL, A. A. On the influence of an energy harvesting device on a dynamical system. Journal of Low Frequency Noise, Vibration and Active Control, 43(2), 669–705 (2024) |
[36] | AMER, T. S., ABDELHFEEZ, S. A., ELBAZ, R. F., and ABOHAMER, M. K. Investigation of the dynamical analysis, stability, and bifurcation for a connected damped oscillator with a piezoelectric harvester. Journal of Vibration Engineering & Technologies, 13, 155 (2025) |
[37] | FANG, S., ZHOU, S., YURCHENKO, D., YANG, T., and LIAO, W. H. Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: a review. Mechanical Systems and Signal Processing, 166, 108419 (2022) |
[38] | CHEN, K., DING, X., TIAN, L., SHEN, H., SONG, R., BIAN, Y., and YANG, Q. An M-shaped buckled beam for enhancing nonlinear energy harvesting. Mechanical Systems and Signal Processing, 188, 110066 (2023) |
[39] | LAN, C., LIAO, Y., HU, G., and TANG, L. Equivalent impedance and power analysis of monostable piezoelectric energy harvesters. Journal of Intelligent Material Systems and Structures, 31(14), 1697–1715 (2020) |
[40] | DULIN, S., LIN, K., SERDUKOVA, L., KUSKE, R., and YURCHENKO, D. Improving the performance of a two-sided vibro-impact energy harvester with asymmetric restitution coefficients. International Journal of Mechanical Sciences, 217, 106983 (2022) |
[41] | FAN, K., LIU, J., WEI, D., ZHANG, D., ZHANG, Y., and TAO, K. A cantilever-plucked and vibration-driven rotational energy harvester with high electric outputs. Energy Conversion and Management, 244, 114504 (2021) |
[42] | TANG, L., YANG, Y., and SOH, C. K. Toward broadband vibration-based energy harvesting. Journal of Intelligent Material Systems and Structures, 21(18), 1867–1897 (2010) |
[43] | CAO, D., WANG, J., GUO, X., LAI, S., and SHEN, Y. Recent advancement of flow-induced piezoelectric vibration energy harvesting techniques: principles, structures, and nonlinear designs. Applied Mathematics and Mechanics (English Edition), 43(7), 959–978 (2022) https://doi.org/10.1007/s10483-022-2867-7 |
[44] | ZHOU, S., CAO, J., and LIN, J. Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dynamics, 86(3), 1599–1611 (2016) |
[45] | FAN, K., TAN, Q., LIU, H., ZHANG, Y., and CAI, M. Improved energy harvesting from low-frequency small vibrations through a monostable piezoelectric energy harvester. Mechanical Systems and Signal Processing, 117, 594–608 (2019) |
[46] | KUMAR, A., ALI, S. F., and AROCKIARAJAN, A. Exploring the benefits of an asymmetric monostable potential function in broadband vibration energy harvesting. Applied Physics Letters, 112(23), 233901 (2018) |
[47] | REZAEI, M., TALEBITOOTI, R., LIAO, W. H., and FRISWELL, M. I. Integrating PZT layer with tuned mass damper for simultaneous vibration suppression and energy harvesting considering exciter dynamics: an analytical and experimental study. Journal of Sound and Vibration, 546, 117413 (2023) |
[48] | LI, X., LIU, K., XIONG, L., and TANG, L. Development and validation of a piecewise linear nonlinear energy sink for vibration suppression and energy harvesting. Journal of Sound and Vibration, 503, 116104 (2021) |
[49] | LU, Z., ZHAO, L., DING, H., and CHEN, L. A dual-functional metamaterial for integrated vibration isolation and energy harvesting. Journal of Sound and Vibration, 509, 116251 (2021) |
[50] | BUKHARI, M. and BARRY, O. Simultaneous energy harvesting and vibration control in a nonlinear metastructure: a spectro-spatial analysis. Journal of Sound and Vibration, 473, 115215 (2020) |
[51] | FANG, S., CHEN, K., ZHAO, B., LAI, Z., ZHOU, S., and LIAO, W. H. Simultaneous broadband vibration isolation and energy harvesting at low frequencies with quasi-zero stiffness and nonlinear monostability. Journal of Sound and Vibration, 553, 117684 (2023) |
[52] | LI, Y., BAKER, E., REISSMAN, T., SUN, C., and LIU, W. K. Design of mechanical metamaterials for simultaneous vibration isolation and energy harvesting. Applied Physics Letters, 111(25), 251903 (2017) |
[53] | LIU, C., ZHAO, R., YU, K., LEE, H. P., and LIAO, B. Simultaneous energy harvesting and vibration isolation via quasi-zero-stiffness support and radially distributed piezoelectric cantilever beams. Applied Mathematical Modelling, 100, 152–169 (2021) |
[54] | SAEED, N. A., ELLABBAN, Y. Y., MOATIMID, G. M., HOU, L., and MOHAMED, A. F. Nonlinear interactions of an n-layer X-shape low-frequency vibration isolator equipped with a nonlinear vibration absorber at 1:1 internal resonance: analytical and numerical investigations. Physica Scripta, 99(10), 105207 (2024) |
[55] | SAEED, N. A., ELLABBAN, Y. Y., HOU, L., MOATIMID, G. M., ZHONG, S., and DURAIHEM, F. Z. Nonlinear dynamics of a bio-inspired 2-DOF low-frequency X-shaped vibration isolator with m-to-n layers driven harmonically under simultaneous primary and 1:1 internal resonances. Chaos, Solitons & Fractals, 190, 115786 (2025) |
[56] | SHAHRAEENI, M., SOROKIN, V., MACE, B., and ILANKO, S. Effect of damping nonlinearity on the dynamics and performance of a quasi-zero-stiffness vibration isolator. Journal of Sound and Vibration, 526, 116822 (2022) |
[57] | SAEED, N. A., AWREJCEWICZ, J., ALKASHIF, M. A., and MOHAMED, M. S. 2D and 3D visualization for the static bifurcations and nonlinear oscillations of a self-excited system with time-delayed controller. Symmetry, 14, 621 (2022) |
[58] | SUN, K. H., LIU, X., and ZHU, C. X. The 0-1 test algorithm for chaos and its applications. Chinese Physics B, 19, 110510 (2010) |
[1] | Tingting CHEN, Kai WANG, Shengchao CHEN, Ziyu XU, Zhe LI, Jiaxi ZHOU. Nonlinear electromechanical coupling dynamics of a two-degree-of-freedom hybrid energy harvester [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(6): 989-1010. |
[2] | Tianchi YU, Feng LIANG, Hualin YANG. Vibration energy harvesting of a three-directional functionally graded pipe conveying fluids [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(5): 795-812. |
[3] | Zhouchao WEI, Yuxi LI, T. KAPITANIAK, Wei ZHANG. Chaotic characteristics for a class of hydro-pneumatic near-zero frequency vibration isolators under dry friction and noise excitation [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(4): 647-662. |
[4] | Jiamei WANG, Siukai LAI, Chen WANG, Yiting ZHANG, Zhaolin CHEN. On the role of sliding friction effect in nonlinear tri-hybrid vibration-based energy harvesting [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(8): 1295-1314. |
[5] | Xinyu LIAN, Bing LIU, Huaxia DENG, Xinglong GONG. A vibration isolator with a controllable quasi-zero stiffness region based on nonlinear force design [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(8): 1279-1294. |
[6] | Long ZHAO, Zeqi LU, Hu DING, Liqun CHEN. A viscoelastic metamaterial beam for integrated vibration isolation and energy harvesting [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1243-1260. |
[7] | Kefan XU, Muqing NIU, Yewei ZHANG, Liqun CHEN. An active high-static-low-dynamic-stiffness vibration isolator with adjustable buckling beams: theory and experiment [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 425-440. |
[8] | Lanbin ZHANG, Yixiang HE, Bo MENG, Huliang DAI, Lin WANG. Unlocking multidirectional and broadband wind energy harvesting with triboelectric nanogenerator and vortex-induced vibration of sphere [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1895-1912. |
[9] | Yang JIN, Tianzhi YANG. Enhanced vibration suppression and energy harvesting in fluid-conveying pipes [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1487-1496. |
[10] | Guangdong SUI, Shuai HOU, Xiaofan ZHANG, Xiaobiao SHAN, Chengwei HOU, Henan SONG, Weijie HOU, Jianming LI. A bio-inspired spider-like structure isolator for low-frequency vibration [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1263-1286. |
[11] | Jihou YANG, Weixing ZHANG, Xiaodong YANG. Integrated device for multiscale series vibration reduction and energy harvesting [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2227-2242. |
[12] | Bin ZHANG, Hongsheng LIU, Shengxi ZHOU, Jun GAO. A review of nonlinear piezoelectric energy harvesting interface circuits in discrete components [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 1001-1026. |
[13] | Dongxing CAO, Junru WANG, Xiangying GUO, S. K. LAI, Yongjun SHEN. Recent advancement of flow-induced piezoelectric vibration energy harvesting techniques: principles, structures, and nonlinear designs [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 959-978. |
[14] | Qiong WANG, Zewen CHEN, Linchuan ZHAO, Meng LI, Hongxiang ZOU, Kexiang WEI, Xizheng ZHANG, Wenming ZHANG. Enhanced galloping energy harvester with cooperative mode of vibration and collision [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 945-958. |
[15] | Guoxin JIN, Zhenghao WANG, Tianzhi YANG. Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 813-824. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||