Applied Mathematics and Mechanics (English Edition) ›› 2022, Vol. 43 ›› Issue (7): 1001-1026.doi: https://doi.org/10.1007/s10483-022-2863-6
• Articles • Previous Articles Next Articles
Bin ZHANG1, Hongsheng LIU1, Shengxi ZHOU2, Jun GAO1
Received:
2021-10-04
Revised:
2021-11-25
Online:
2022-07-01
Published:
2022-06-30
Contact:
Shengxi ZHOU, E-mail: zhoushengxi@nwpu.edu.cn
Supported by:
2010 MSC Number:
Bin ZHANG, Hongsheng LIU, Shengxi ZHOU, Jun GAO. A review of nonlinear piezoelectric energy harvesting interface circuits in discrete components. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 1001-1026.
[1] WHELAN, M. J., GANGONE, M. V., and JANOYAN, K. D. Highway bridge assessment using an adaptive real-time wireless sensor network. IEEE Sensors Journal, 9, 1405-1413(2009) [2] JOUHARI, M., IBRAHIMI, K., TEMBINE, H., and BEN-OTHMAN, J. Underwater wireless sensor networks:a survey on enabling technologies, localization protocols, and internet of underwater things. IEEE Access, 7, 96879-96899(2019) [3] SUN, J. Z. and HUANG, Q. Wireless sensor network based bridge health monitoring system for long-span bridges. Advanced Materials Research, 905, 575-579(2014) [4] ZHENG, G. S., PFERSICH, S., ELDRIDGE, A., ZHOU, J. S., TIAN, D. X., and LEUNG, V. C. M. Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring. IEEE/CAA Journal of AutomaticaSinica, 6, 64-74(2019) [5] MA, D. X., MA, J., XU, P. M., and PANG, Y. The application research progress of wireless sensor networks. Applied Mechanics and Materials, 475-476, 520-523(2014) [6] RAMYA, R., SARAVANAKUMAR, G., and RAVI, S. Energy Harvesting in Wireless Sensor Networks, Springer India, Delhi (2016) [7] DU, S., JIA, Y., and SESHIA, A. A. An efficient inductorless dynamically configured interface circuit for piezoelectric vibration energy harvesting. IEEE Transactions on Power Electronics, 32, 3595-3609(2016) [8] WANG, X., XUE, C., and LI, H. Nonlinear primary resonance analysis for a coupled thermopiezoelectric-mechanical model of piezoelectric rectangular thin plates. Applied Mathematics and Mechanics (English Edition), 40(8), 1155-1168(2019) https://doi.org/10.1007/s10483-019-2510-6 [9] JUNG, H. J., SONG, Y., HONG, S. K., YANG, C. H., HWANG, S. J., JEONG, S. Y., and SUNG, T. H. Design and optimization of piezoelectric impact-based micro wind energy harvester for wireless sensor network. Sensors and Actuators A:Physical, 222, 314-321(2015) [10] LI, Z. J., LIU, Y., YIN, P. L., PENG, Y., LUO, J., XIE, S. R., and PU, H. Y. Constituting abrupt magnetic flux density change for power density improvement in electromagnetic energy harvesting. International Journal of Mechanical Sciences, 198, 106363(2021) [11] WANG, L., ZHAO, L. B., LUO, G. X., ZHAO, Y. H., YANG, P., JIANG, Z. D., and MAEDA, R. System level design of wireless sensor node powered by piezoelectric vibration energy harvesting. Sensors and Actuators A:Physical, 310, 112039(2020) [12] HUANG, D. M., CHEN, J. Y., ZHOU, S. X., FANG, X. L., and LI, W. Response regimes of nonlinear energy harvesters with a resistor-inductor resonant circuit by complexification-averaging method. Science China Technological Sciences, 64, 1212-1227(2021) [13] YANG, T., ZHOU, S. X., FANG, S. T., QIN, W. Y., and INMAN, D. J. Nonlinear vibration energy harvesting and vibration suppression technologies:designs, analysis, and applications. Applied Physics Reviews, 8, 031317(2021) [14] MIAO, G., FANG, S. T., WANG, S., and ZHOU, S. X. A low-frequency rotational electromagnetic energy harvester using a magnetic plucking mechanism. Applied Energy, 305, 117838(2022) [15] WANG, H. R., HU, H. P., YANG, J. S., and HU, Y. T. Spiral piezoelectric transducer in torsional motion as low-frequency power harvester. Applied Mathematics and Mechanics (English Edition), 34(5), 589-596(2013) https://doi.org/10.1007/s10483-013-1693-x [16] CHEW, Z. J., RUAN, T., and ZHU, M. Power management circuit for wireless sensor nodes powered by energy harvesting:on the synergy of harvester and load. IEEE Transactions on Power Electronics, 34, 8671-8681(2018) [17] DUAN, X. J., CAO, D. X., LI, X. G., and SHEN, Y. J. Design and dynamic analysis of integrated architecture for vibration energy harvesting including piezoelectric frame and mechanical amplifier. Applied Mathematics and Mechanics (English Edition), 42(6), 755-770(2021) https://doi.org/10.1007/s10483-021-2741-8 [18] LAN, J. F., ZHENG, L., AN, Z. Q., HOU, D. S., SUN, D. P., and ZHU, J. L. High power density and flexible self-powered piezoelectric nanogenerator based on solution crystallization. Journal of Applied Polymer Science, 138, 50896(2021) [19] ZHANG, B., LI, D. Z., LI, Y. R., DUCHARNE, B., and GAO, J. Double peak derived from piezoelectric coefficient nonlinearity and proposal for self-powered systems. Transactions of Nanjing University of Aeronautics and Astronautics, 35, 109-115(2018) [20] MAHALE, B., KUMAR, N., PANDEY, R., and RANJAN, R. High power density lowlead-piezoceramic-polymer composite energy harvester. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 66, 789-796(2019) [21] PARK, S., KIM, H., KIM, J., LEE, T. H., and CHO, S. G. Taguchi design of PZT-based piezoelectric cantilever beam with maximum and robust voltage for wide frequency range. Journal of Electronic Materials, 48, 6881-6889(2019) [22] PENG, Y., XU, Z. B., WANG, M., LI, Z. J., PENG, J. L., LUO, J., XIE, S. R., PU, H. Y., and YANG, Z. B. Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators. Renewable Energy, 172, 551-563(2021) [23] RUI, X. B., ZHANG, Y., ZENG, Z. M., YUE, G. X., HUANG, X. J., and LI, J. B. Design and analysis of a broadband three-beam impact piezoelectric energy harvester for low-frequency rotational motion. Mechanical Systems and Signal Processing, 149, 107307(2021) [24] CAO, D. X., XIA, W., and HU, W. H. Low-frequency and broadband vibration energy harvester driven by mechanical impact based on layer-separated piezoelectric beam. Applied Mathematics and Mechanics (English Edition), 40(12), 1777-1790(2019) https://doi.org/10.1007/s10483-019-2542-5 [25] WU, Y. P., LI, S., FAN, K. Q., JI, H., and QIU, J. H. Investigation of an ultra-low frequency piezoelectric energy harvester with high frequency up-conversion factor caused by internal resonance mechanism. Mechanical Systems and Signal Processing, 162, 108038(2022) [26] ZHOU, S. X., CAO, J. Y., and LIN, J. Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dynamics, 86, 1599-1611(2016) [27] LU, Z. Q., SHAO, D., FANG, Z. W., DING, H., and CHEN, L. Q. Integrated vibration isolation and energy harvesting via a bistable piezo-composite plate. Journal of Vibration and Control, 26, 779-789(2020) [28] WANG, C., LAI, S. K., WANG, Z. C., WANG, J. M., YANG, W., and NI, Y. Q. A low-frequency, broadband and tri-hybrid energy harvester with septuple-stable nonlinearity-enhanced mechanical frequency up-conversion mechanism for powering portable electronics. Nano Energy, 64, 103943(2019) [29] WANG, C., ZHANG, Q. C., and WANG, W. Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity. Journal of Sound and Vibration, 399, 169-181(2017) [30] YANG, Y. X., SUN, L., ZHANG, Y., and SU, Y. K. Efficient and broadband four-wave mixing in a compact silicon subwavelength nanohole waveguide. Advanced Optical Materials, 7, 1900810(2019) [31] KUANG, Y., HIDE, R., and ZHU, M. L. Broadband energy harvesting by nonlinear magnetic rolling pendulum with subharmonic resonance. Applied Energy, 255, 113822(2019) [32] ZHOU, S. X., CAO, J. Y., ERTURK, A., and LIN, J. Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Applied Physics Letters, 102, 173901(2013) [33] SONG, R. J., SHAN, X. B., LV, F. C., LI, J. Z., and XIE, T. A novel piezoelectric energy harvester using the macro fiber composite cantilever with a bicylinder in water. Applied Sciences, 5, 1942-1954(2015) [34] JEYASEELAN, A. A. and DUTTA, S. Improvement in piezoelectric properties of PLZT thin film with large cation doping at A-site. Journal of Alloys and Compounds, 826, 153956(2020) [35] YAN, X. H., LI, G., WANG, Z. Y., YU, Z. C., WANG, K. Y., and WU, Y. C. Recent progress on piezoelectric materials for renewable energy conversion. Nano Energy, 77, 105180(2020) [36] SUKUMARAN, S., CHATBOURI, S., ROUXEL, D., TISSERAND, E., THIEBAUD, F., and BEN-ZINEB, T. Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications. Journal of Intelligent Material Systems and Structures, 32, 746-780(2021) [19] ZHANG, B., LI, D. Z., LI, Y. R., DUCHARNE, B., and GAO, J. Double peak derived from piezoelectric coefficient nonlinearity and proposal for self-powered systems. Transactions of Nanjing University of Aeronautics and Astronautics, 35, 109-115(2018) [20] MAHALE, B., KUMAR, N., PANDEY, R., and RANJAN, R. High power density lowlead-piezoceramic-polymer composite energy harvester. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 66, 789-796(2019) [21] PARK, S., KIM, H., KIM, J., LEE, T. H., and CHO, S. G. Taguchi design of PZT-based piezoelectric cantilever beam with maximum and robust voltage for wide frequency range. Journal of Electronic Materials, 48, 6881-6889(2019) [22] PENG, Y., XU, Z. B., WANG, M., LI, Z. J., PENG, J. L., LUO, J., XIE, S. R., PU, H. Y., and YANG, Z. B. Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators. Renewable Energy, 172, 551-563(2021) [23] RUI, X. B., ZHANG, Y., ZENG, Z. M., YUE, G. X., HUANG, X. J., and LI, J. B. Design and analysis of a broadband three-beam impact piezoelectric energy harvester for low-frequency rotational motion. Mechanical Systems and Signal Processing, 149, 107307(2021) [24] CAO, D. X., XIA, W., and HU, W. H. Low-frequency and broadband vibration energy harvester driven by mechanical impact based on layer-separated piezoelectric beam. Applied Mathematics and Mechanics (English Edition), 40(12), 1777-1790(2019) https://doi.org/10.1007/s10483-019-2542-5 [25] WU, Y. P., LI, S., FAN, K. Q., JI, H., and QIU, J. H. Investigation of an ultra-low frequency piezoelectric energy harvester with high frequency up-conversion factor caused by internal resonance mechanism. Mechanical Systems and Signal Processing, 162, 108038(2022) [26] ZHOU, S. X., CAO, J. Y., and LIN, J. Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dynamics, 86, 1599-1611(2016) [27] LU, Z. Q., SHAO, D., FANG, Z. W., DING, H., and CHEN, L. Q. Integrated vibration isolation and energy harvesting via a bistable piezo-composite plate. Journal of Vibration and Control, 26, 779-789(2020) [28] WANG, C., LAI, S. K., WANG, Z. C., WANG, J. M., YANG, W., and NI, Y. Q. A low-frequency, broadband and tri-hybrid energy harvester with septuple-stable nonlinearity-enhanced mechanical frequency up-conversion mechanism for powering portable electronics. Nano Energy, 64, 103943(2019) [29] WANG, C., ZHANG, Q. C., and WANG, W. Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity. Journal of Sound and Vibration, 399, 169-181(2017) [30] YANG, Y. X., SUN, L., ZHANG, Y., and SU, Y. K. Efficient and broadband four-wave mixing in a compact silicon subwavelength nanohole waveguide. Advanced Optical Materials, 7, 1900810(2019) [31] KUANG, Y., HIDE, R., and ZHU, M. L. Broadband energy harvesting by nonlinear magnetic rolling pendulum with subharmonic resonance. Applied Energy, 255, 113822(2019) [32] ZHOU, S. X., CAO, J. Y., ERTURK, A., and LIN, J. Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Applied Physics Letters, 102, 173901(2013) [33] SONG, R. J., SHAN, X. B., LV, F. C., LI, J. Z., and XIE, T. A novel piezoelectric energy harvester using the macro fiber composite cantilever with a bicylinder in water. Applied Sciences, 5, 1942-1954(2015) [34] JEYASEELAN, A. A. and DUTTA, S. Improvement in piezoelectric properties of PLZT thin film with large cation doping at A-site. Journal of Alloys and Compounds, 826, 153956(2020) [35] YAN, X. H., LI, G., WANG, Z. Y., YU, Z. C., WANG, K. Y., and WU, Y. C. Recent progress on piezoelectric materials for renewable energy conversion. Nano Energy, 77, 105180(2020) [36] SUKUMARAN, S., CHATBOURI, S., ROUXEL, D., TISSERAND, E., THIEBAUD, F., and BEN-ZINEB, T. Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications. Journal of Intelligent Material Systems and Structures, 32, 746-780(2021) A review of nonlinear piezoelectric energy harvesting interface circuits in discrete components 1023 [37] KLIMIEC, E., KACZMAREK, H., KROLIKOWSKI, B., and KÓ LASZCZYNSKI, G. Cellulaŕ polyolefin composites as piezoelectric materials:properties and applications. Polymers, 12, 2698(2020) [38] KAMENSHCHIKOV, M. V., SOLNYSHKIN, A. V., and PRONIN, I. P. Dielectric response of capacitor structures based on PZT annealed at different temperatures. Physics Letters A, 380, 4003-4007(2016) [39] SAMANTA, S., SANKARANARAYANAN, V., and SETHUPATHI, K. Band gap, piezoelectricity and temperature dependence of differential permittivity and energy storage density of PZT with different Zr/Ti ratios. Vacuum, 156, 456-462(2018) [40] ZHANG, S., LIN, X. J., LIU, H., YUAN, Z., HUAN, Y., YUAN, X., HUANG, S. F., and CHENG, X. High-performance flexible piezoelectric nanogenerator based on necklace-like PZT particle chains. International Journal of Energy Research, 45, 6213-6226(2021) [41] HUAN, Y., ZHANG, X. S., SONG, J. N., ZHAO, Y., WEI, T., ZHANG, G. G., and WANG, X. H. High-performance piezoelectric composite nanogenerator based on Ag/(K, Na) NbO3 heterostructure. Nano Energy, 50, 62-69(2018) [42] SONG, H. C., KIM, H. C., KANG, C. Y., KIM, H. J., YOON, S. J., and JEONG, D. Y. Multilayer piezoelectric energy scavenger for large current generation. Journal of Electroceramics, 23, 301(2009) [43] NADAUD, K., POULIN-VITTRANT, G., and ALQUIER, D. Influence of topology and diode characteristics of AC-DC converters for low power piezoelectric energy harvesting. Sensors and Actuators A:Physical, 330, 112901(2021) [44] LIANG, J. and LIAO, W. H. Impedance modeling and analysis for piezoelectric energy harvesting systems. IEEE/ASME Transactions on Mechatronics, 17, 1145-1157(2011) [45] LI, Z. Y., TANG, L. H., YANG, W. Q., ZHAO, R. D., LIU, K. F., and MACE, B. Transient response of a nonlinear energy sink based piezoelectric vibration energy harvester coupled to a synchronized charge extraction interface. Nano Energy, 87, 106179(2021) [46] GIULIANO, A. and ZHU, M. L. A passive impedance matching interface using a PC permalloy coil for practically enhanced piezoelectric energy harvester performance at low frequency. IEEE Sensors Journal, 14, 2773-2781(2014) [47] PRIYA, S. Modeling of electric energy harvesting using piezoelectric windmill. Applied Physics Letters, 87, 184101(2005) [48] YAN, B., ZHOU, S. X., and LITAK, G. Nonlinear analysis of the tristable energy harvester with a resonant circuit for performance enhancement. International Journal of Bifurcation and Chaos, 28, 1850092(2018) [49] PEIGNEY, M. and SIEGERT, D. Piezoelectric energy harvesting from traffic-induced bridge vibrations. Smart Materials and Structures, 22, 095019(2013) [50] WANG, J. H., ZHAO, B., LIAO, W. H., and LIANG, J. R. New insight into piezoelectric energy harvesting with mechanical and electrical nonlinearities. Smart Materials and Structures, 29, 04LT01(2020) [51] OTTMAN, G. K., HOFMANN, H. F., BHATT, A. C., and LESIEUTRE, G. A. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Transactions on Power Electronics, 17, 669-676(2002) [52] LEFEUVRE, E., BADEL, A., RICHARD, C., and GUYOMAR, D. Piezoelectric energy harvesting device optimization by synchronous electric charge extraction. Journal of Intelligent Material Systems and Structures, 16, 865-876(2005) [53] LALLART, M. and GUYOMAR, D. An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output. Smart Materials and Structures, 17, 035030(2008) [54] TAYLOR, G. W., BURNS, J. R., KAMMANN, S. A., POWERS, W. B., and WELSH, T. R. The energy harvesting eel:a small subsurface ocean/river power generator. IEEE Journal of Oceanic Engineering, 26, 539-547(2001) [55] SHEN, H., QIU, J. H., JI, H. L., ZHU, K. J., BALSI, M., GIORGIO, I., and DELL'ISOLA, F. A low-power circuit for piezoelectric vibration control by synchronized switching on voltage sources. Sensors and Actuators A:Physical, 161, 245-255(2010) [56] GUYOMAR, D., BADEL, A., LEFEUVRE, E., and RICHARD, C. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52, 584-595(2005) [57] RICHARDS, C. D., ANDERSON, M. J., BAHR, D. F., and RICHARDS, R. F. Efficiency of energy conversion for devices containing a piezoelectric component. Journal of Micromechanics and Microengineering, 14, 717-721(2004) [58] ROUNDY, S. and WRIGHT, P. K. A piezoelectric vibration based generator for wireless electronics. Smart Materials and structures, 13, 1131-1142(2004) [59] AJITSARIA, J., CHOE, S. Y., SHEN, D., and KIM, D. J. Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Materials and Structures, 16, 447-454(2007) [60] ZHANG, B., LIU, H. S., LI, D. Z., LIANG, J. H., and GAO, J. Analytical modeling and validation of a preloaded piezoceramic current output. Micromachines, 12, 353(2021) [61] RAMADASS, Y. and CHANDRAKASAN, A. P. An efficient piezoelectric energy-harvesting interface circuit using a bias-flip rectifier and shared inductor. International Solid-State Circuits Conference, 45, 189-204(2009) [62] SHU, Y. C. and LIEN, I. C. Efficiency of energy conversion for a piezoelectric power harvesting system. Journal of Micromechanics and Microengineering, 16, 2429-2438(2006) [63] SHU, Y. C., LIEN, I. C., and WU, W. J. An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Materials and Structures, 16, 2253-2264(2007) [64] LEFEUVRE, E., BADEL, A., BENAYAD, A., LEBRUN, L., RICHARD, C., and GUYOMAR, D. A comparison between several approaches of piezoelectric energy harvesting. Journal De Physique IV, 128, 177-186(2005) [65] ZHU, L. Y., CHEN, R. W., and LIU, X. J. Theoretical analyses of the electronic breaker switching method for nonlinear energy harvesting interfaces. Journal of Intelligent Material Systems and Structures, 23, 441-451(2012) [66] NECHIBVUTE, A. and CHAWANDA, P. L. A. Applicability of self-powered synchronized electric charge extraction (SECE) circuit for piezoelectric energy harvesting. International Journal of Engineering and Technology, 4, 212608868(2014) [67] LALLART, M., ZHOU, S. X., YANG, Z. C., YAN, L. J., LI, K., and CHEN, Y. Coupling mechanical and electrical nonlinearities:the effect of synchronized discharging on tristable energy harvesters. Applied Energy, 266, 114516(2020) [68] FERRARI, M., BAU, M., CERINI, F., and FERRARI, V. Impact-enhanced multi-beam piezo-electric converter for energy harvesting in autonomous sensors. Procedia Engineering, 47, 418-421(2012) [69] PAN, J. N., QIN, W. Y., YANG, Y. F., and YANG, Y. W. A collision impact based energy harvester using piezoelectric polyline beams with electret coupling. Journal of Physics D:Applied Physics, 54, 225502(2021) [70] HE, X. F., TEH, K. S., LI, S. Y., DONG, L. X., and JIANG, S. L. Modeling and experimental verification of an impact-based piezoelectric vibration energy harvester with a rolling proof mass. Sensors and Actuators A:Physical, 259, 171-179(2017) [71] PANYAM, M., MASANA, R., and DAQAQ, M. F. On approximating the effective bandwidth of bi-stable energy harvesters. International Journal of Non-Linear Mechanics, 67, 153-163(2014) [72] PAN, D. K., LI, Y. Q., and DAI, F. H. The influence of lay-up design on the performance of bi-stable piezoelectric energy harvester. Composite Structures, 161, 227-236(2017) [73] PAN, D. K. and DAI, F. H. Design and analysis of a broadband vibratory energy harvester using bi-stable piezoelectric composite laminate. Energy Conversion and Management, 169, 149-160(2018) [74] TANG, Q. C., YANG, Y. L., and LI, X. Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion. Smart Materials and Structures, 20, 125011(2011) [75] QIAN, F., HAJJ, M. R., and ZUO, L. Bio-inspired bi-stable piezoelectric harvester for broadband vibration energy harvesting. Energy Conversion and Management, 222, 113174(2020) [56] GUYOMAR, D., BADEL, A., LEFEUVRE, E., and RICHARD, C. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52, 584-595(2005) [57] RICHARDS, C. D., ANDERSON, M. J., BAHR, D. F., and RICHARDS, R. F. Efficiency of energy conversion for devices containing a piezoelectric component. Journal of Micromechanics and Microengineering, 14, 717-721(2004) [58] ROUNDY, S. and WRIGHT, P. K. A piezoelectric vibration based generator for wireless electronics. Smart Materials and structures, 13, 1131-1142(2004) [59] AJITSARIA, J., CHOE, S. Y., SHEN, D., and KIM, D. J. Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Materials and Structures, 16, 447-454(2007) [60] ZHANG, B., LIU, H. S., LI, D. Z., LIANG, J. H., and GAO, J. Analytical modeling and validation of a preloaded piezoceramic current output. Micromachines, 12, 353(2021) [61] RAMADASS, Y. and CHANDRAKASAN, A. P. An efficient piezoelectric energy-harvesting interface circuit using a bias-flip rectifier and shared inductor. International Solid-State Circuits Conference, 45, 189-204(2009) [62] SHU, Y. C. and LIEN, I. C. Efficiency of energy conversion for a piezoelectric power harvesting system. Journal of Micromechanics and Microengineering, 16, 2429-2438(2006) [63] SHU, Y. C., LIEN, I. C., and WU, W. J. An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Materials and Structures, 16, 2253-2264(2007) [64] LEFEUVRE, E., BADEL, A., BENAYAD, A., LEBRUN, L., RICHARD, C., and GUYOMAR, D. A comparison between several approaches of piezoelectric energy harvesting. Journal De Physique IV, 128, 177-186(2005) [65] ZHU, L. Y., CHEN, R. W., and LIU, X. J. Theoretical analyses of the electronic breaker switching method for nonlinear energy harvesting interfaces. Journal of Intelligent Material Systems and Structures, 23, 441-451(2012) [66] NECHIBVUTE, A. and CHAWANDA, P. L. A. Applicability of self-powered synchronized electric charge extraction (SECE) circuit for piezoelectric energy harvesting. International Journal of Engineering and Technology, 4, 212608868(2014) [67] LALLART, M., ZHOU, S. X., YANG, Z. C., YAN, L. J., LI, K., and CHEN, Y. Coupling mechanical and electrical nonlinearities:the effect of synchronized discharging on tristable energy harvesters. Applied Energy, 266, 114516(2020) [68] FERRARI, M., BAU, M., CERINI, F., and FERRARI, V. Impact-enhanced multi-beam piezo-electric converter for energy harvesting in autonomous sensors. Procedia Engineering, 47, 418-421(2012) [69] PAN, J. N., QIN, W. Y., YANG, Y. F., and YANG, Y. W. A collision impact based energy harvester using piezoelectric polyline beams with electret coupling. Journal of Physics D:Applied Physics, 54, 225502(2021) [70] HE, X. F., TEH, K. S., LI, S. Y., DONG, L. X., and JIANG, S. L. Modeling and experimental verification of an impact-based piezoelectric vibration energy harvester with a rolling proof mass. Sensors and Actuators A:Physical, 259, 171-179(2017) [71] PANYAM, M., MASANA, R., and DAQAQ, M. F. On approximating the effective bandwidth of bi-stable energy harvesters. International Journal of Non-Linear Mechanics, 67, 153-163(2014) [72] PAN, D. K., LI, Y. Q., and DAI, F. H. The influence of lay-up design on the performance of bi-stable piezoelectric energy harvester. Composite Structures, 161, 227-236(2017) [73] PAN, D. K. and DAI, F. H. Design and analysis of a broadband vibratory energy harvester using bi-stable piezoelectric composite laminate. Energy Conversion and Management, 169, 149-160(2018) [74] TANG, Q. C., YANG, Y. L., and LI, X. Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion. Smart Materials and Structures, 20, 125011(2011) [75] QIAN, F., HAJJ, M. R., and ZUO, L. Bio-inspired bi-stable piezoelectric harvester for broadband vibration energy harvesting. Energy Conversion and Management, 222, 113174(2020) A review of nonlinear piezoelectric energy harvesting interface circuits in discrete components 1025 [76] ZHOU, S. X., CAO, J. Y., INMAN, D. J., LIN, J., LIU, S. S., and WANG, Z. Z. Broadband tristable energy harvester:modeling and experiment verification. Applied Energy, 133, 33-39(2014) [77] ZHOU, S. X., CAO, J. Y., INMAN, D. J., LIN, J., and LI, D. Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. Journal of Sound and Vibration, 373, 223-235(2016) [78] ZHOU, S. X. and ZUO, L. Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Communications in Nonlinear Science and Numerical Simulation, 61, 271-284(2018) [79] MA, X. Q., LI, H. T., ZHOU, S. X., YANG, Z. C., and LITAK, G. Characterizing nonlinear characteristics of asymmetric tristable energy harvesters. Mechanical Systems and Signal Processing, 168, 108612(2022) [80] WU, Y. P., BADEL, A., FORMOSA, F., LIU, W. Q., and AGBOSSOU, A. Nonlinear vibration energy harvesting device integrating mechanical stoppers used as synchronous mechanical switches. Journal of Intelligent Material Systems and Structures, 25, 1658-1663(2014) [81] ZHU, L. Y., CHEN, R. W., and LIU, X. J. Theoretical analyses of the electronic breaker switching method for nonlinear energy harvesting interfaces. Journal of Intelligent Material Systems and Structures, 23, 441-451(2012) [82] XIA, H. K., XIA, Y. S., YE, Y. D., SHI, G., WANG, X. D., and CHEN, Z. D. A self-powered PSSHI and SECE hybrid rectifier for piezoelectric energy harvesting. IEICE Electronics Express, 17, 20200269(2020) [83] ELTAMALY, A. M. and ADDOWEESH, K. E. A novel self-power SSHI circuit for piezoelectric energy harvester. IEEE Transactions on Power Electronics, 32, 7663-7673(2016) [84] LIANG, J. and LIAO, W. H. Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems. IEEE Transactions on Industrial Electronics, 59, 1950-1960(2011) [85] CHEN, Z. S., HE, J., LIU, J. H., and XIONG, Y. P. Switching delay in self-powered nonlinear piezoelectric vibration energy harvesting circuit:mechanisms, effects, and solutions. IEEE Transactions on Power Electronics, 34, 2427-2440(2018) [86] DU, S. and SESHIA, A. A. An inductorless bias-flip rectifier for piezoelectric energy harvesting. IEEE Journal of Solid-State Circuits, 52, 2746-2757(2017) [87] WU, L., GUO, C. R., CHEN, Z. S., and HA, D. S. An SSHC circuit integrated with an active rectifier for piezoelectric energy harvesting. 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems, Dallas (2019) [88] YUE, X. and DU, S. Voltage flip efficiency optimization of SSHC rectifiers for piezoelectric energy harvesting. 2021 IEEE International Symposium on Circuits and Systems, Daegu (2021) [89] WANG, H. T., SHI, D. Y., and ZHENG, S. J. Synchronous charge extraction and voltage inversion (SCEVI):a new efficient vibration-based energy harvesting scheme. Journal of Vibroengineering, 17, 1037-1050(2015) [90] LALLART, M., WU, W. J., HSIEH, Y., and YAN, L. Synchronous inversion and charge extraction (SICE):a hybrid switching interface for efficient vibrational energy harvesting. Smart Materials and Structures, 26, 115012(2017) [91] LALLART, M., GARBUIO, L., PETIT, L., RICHARD, C., and GUYOMAR, D. Double synchronized switch harvesting (DSSH):a new energy harvesting scheme for efficient energy extraction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55, 2119-2130(2008) [92] XIA, H. K., XIA, Y. S., SHI, G., YE, Y. D., WANG, X. D., CHEN, Z. D., and JIANG, Q. A self-powered S-SSHI and SECE hybrid rectifier for PE energy harvesters:analysis and experiment. IEEE Transactions on Power Electronics, 36, 1680-1692(2020) [93] OTTMAN, G. K., HOFMANN, H. F., and LESIEUTRE, G. A. Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Transactions on Power Electronics, 18, 696-703(2003) [94] WAHAB, S. A., BHUYAN, M. S., SAMPE, J., and ALI, S. H. M. Parametric analysis of boost converter for energy harvesting using piezoelectric for micro devices. 2014 IEEE International Conference on Semiconductor Electronics, Pittsburgh (2014) [95] TABESH, A. and FRECHETTE, L. G. A low-power stand-alone adaptive circuit for harvestinǵ energy from a piezoelectric micropower generator. IEEE Transactions on Industrial Electronics, 57, 840-849(2009) [96] KUSHINO, Y. and KOIZUMI, H. Piezoelectric energy harvesting circuit using full-wave voltage doubler rectifier and switched inductor. 2014 IEEE Energy Conversion Congress and Exposition, Pittsburgh (2014) [97] LIANG, J. R. and LIAO, W. H. Piezoelectric energy harvesting and dissipation on structural damping. Journal of Intelligent Material Systems and Structures, 20, 515-527(2009) [98] LALLART, M. and GUYOMAR, D. Piezoelectric conversion and energy harvesting enhancement by initial energy injection. Applied Physics Letters, 97, 014104(2010) [99] BECKER, P., HYMON, E., FOLKMER, B., and MANOLI, Y. High efficiency piezoelectric energy harvester with synchronized switching interface circuit. Sensors and Actuators A:Physical, 202, 155-161(2013) [100] LIANG, J. R. Synchronized bias-flip interface circuits for piezoelectric energy harvesting enhancement:a general model and prospects. Journal of Intelligent Material Systems and Structures, 28, 339-356(2017) [101] LIANG, J. R., ZHAO, Y. H., and ZHAO, K. Synchronized triple bias-flip interface circuit for piezoelectric energy harvesting enhancement. IEEE Transactions on Power Electronics, 34, 275-286(2018) [102] DONG, Y., LI, D. Z., DUCHARNE, B., WANG, X. H., GAO, J., and ZHANG, B. Impedance analysis and optimization of self-powered interface circuit for wireless sensor nodes application. Shock and Vibration, 2018, 8475896(2018) [103] LIU, H. C., ZHONG, J. W., LEE, C. K., LEE, S. W., and LIN, L. W. A comprehensive review on piezoelectric energy harvesting technology:materials, mechanisms, and applications. Applied Physics Reviews, 5, 041306(2018) |
[1] | M. ABBASI GAVARI, M. R. HOMAEINEZHAD. Nonlinear dynamic modeling of planar moving Timoshenko beam considering non-rigid non-elastic axial effects [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 479-496. |
[2] | Hongyan CHEN, Youcheng ZENG, Hu DING, Siukai LAI, Liqun CHEN. Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 389-406. |
[3] | Runqing CAO, Zilong GUO, Wei CHEN, Huliang DAI, Lin WANG. Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 261-276. |
[4] | Shuangpeng LI, Ruoran CHENG, Nannan MA, Chunli ZHANG. Analysis of piezoelectric semiconductor fibers under gradient temperature changes [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 311-320. |
[5] | Xiaoye MAO, Jiabin WU, Junning ZHANG, Hu DING, Liqun CHEN. Dirac method for nonlinear and non-homogenous boundary value problems of plates [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 15-38. |
[6] | Yong WANG, Peili WANG, Haodong MENG, Liqun CHEN. Dynamic performance and parameter optimization of a half-vehicle system coupled with an inerter-based X-structure nonlinear energy sink [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 85-110. |
[7] | N. SHAHVEISI, S. FELI. Dynamic and electrical responses of a curved sandwich beam with glass reinforced laminate layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 155-178. |
[8] | Hu DING, J. C. JI. Vibration control of fluid-conveying pipes: a state-of-the-art review [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1423-1456. |
[9] | Yang JIN, Tianzhi YANG. Enhanced vibration suppression and energy harvesting in fluid-conveying pipes [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1487-1496. |
[10] | Yuan YANG, Nenghui ZHANG, Hanlin LIU, Jiawei LING, Zouqing TAN. Piezoelectric and flexoelectric effects of DNA adsorbed films on microcantilevers [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1547-1562. |
[11] | Guangdong SUI, Shuai HOU, Xiaofan ZHANG, Xiaobiao SHAN, Chengwei HOU, Henan SONG, Weijie HOU, Jianming LI. A bio-inspired spider-like structure isolator for low-frequency vibration [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1263-1286. |
[12] | Youqi ZHANG, Rongyu XIA, Jie XU, Kefu HUANG, Zheng LI. Theoretical analysis of surface waves in piezoelectric medium with periodic shunting circuits [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1287-1304. |
[13] | Xueqian FANG, Qilin HE, Hongwei MA, Changsong ZHU. Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1351-1366. |
[14] | Ying MENG, Xiaoye MAO, Hu DING, Liqun CHEN. Nonlinear vibrations of a composite circular plate with a rigid body [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(6): 857-876. |
[15] | Shengtao ZHANG, Jiaxi ZHOU, Hu DING, Kai WANG, Daolin XU. Fractional nonlinear energy sinks [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 711-726. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||