[1] Narendar, S. and Gopalkrishnan, S. Nonlocal scale effects on ultrasonic wave characteristics of nanorods. Physica E-Low-Dimensional Systems and Nanostructures, 42, 1601-1604(2010)
[2] Narendar, S. Ultrasonic wave characteristics of nanorods via nonlocal strain gradient models. Journal of Applied Physics, 107, 084312(2010)
[3] Narendar, S. and Gopalkrishnan, S. Axial wave propagation in coupled nanorod system with nonlocal small scale effects. Composites Part B-Engineering, 42, 2013-2023(2011)
[4] Murmu, T. and Adhikari, S. Nonlocal effects in the longitudinal vibration of double-nanorod systems. Physica E-Low-Dimensional Systems and Nanostructures, 43, 415-422(2010)
[5] Li, T. S. and Lin, M. F. Transport properties of finite carbon nanotubes under electric and magnetic fields. Journal of Physica Condensed Matter, 18, 10693-10703(2006)
[6] Rosales, L., Pacheco, M., Barticevic, Z., Rocha, C. G., and Latgé, A. Magnetic-field effects on transport in carbon nanotube junctions. Physical Review B, 75, 165401(2007)
[7] Belluci, S., Gonzalez, J., Guinea, F., Onorato, P., and Perfetto, E. Magnetic field effects in carbon nanotubes. Journal of Physica Condensed Matter, 19, 395017(2007)
[8] Chen, J. H., Zhang, J., and Han, R. S. First principles calculation of transport property in nanodevices under an external magnetic field. Chinese Physics B, 17, 2208-2216(2008)
[9] Kibalchenko, M., Payne, M. C., and Yates, J. R. Magnetic response of single-walled carbon nanotubes induced by an external magnetic field. ACS Nano, 5, 537-545(2011)
[10] Roche, S. and Saito, R. Effects of magnetic field and disorder on the electronic properties of carbon nanotubes. Physical Review B, 59, 5242-5246(1999)
[11] Lobo, T., Figureira, M. S., Latgé, A., and Ferreira, M. S. Magnetic-field effects on the electronic transport properties of a carbon nanotube with a side-coupled magnetic impurity. Physica BCondensed Matter, 384, 113-115(2006)
[12] Zhang, Z. H., Guo, W. L., and Guo, Y. F. The effects of axial magnetic field on electronic properties of carbon nanotubes. Acta Physica Sinica, 55, 6526-6531(2006)
[13] Sebastiani, D. and Kudin, K. N. Electronic response properties of carbon nanotubes in magnetic fields. ACS Nano, 2, 661-668(2008)
[14] Kibis, O. V. Electronic phenomena in chiral carbon nanotubes in the presence of a magnetic field. Physica E-Low-Dimensional Systems and Nanostructures, 12, 741-744(2002)
[15] Wang, H., Dong, K., Men, F., Yan, Y. J., and Wang, X. Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix. Applied Mathematical Modelling, 34, 878-889(2010)
[16] Narendar, S., Gupta, S. S., and Gopalakrishnan, S. Longitudinal magnetic field effect on nonlocal ultrasonic vibration analysis of single-walled carbon nanotubes based on wave propagation approach. Advance Science Letters, 4, 3382-3389(2011)
[17] Li, S., Xie, H. J., and Wang, X. Dynamic characteristics of multi-walled carbon nanotubes under a transverse magnetic field. Bulletin Material Science, 34, 45-52(2011)
[18] Narendar, S., Gupta, S. S., and Gopalakrishnan, S. Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler-Bernoulli beam theory. Applied Mathematical Modelling, 36, 4529-4538(2012)
[19] Wang, X., Shen, J. X., Liu, Y., Shen, G. G., and Lu, G. Rigorous van der Waals effect on vibration characteristics of multi-walled carbon nanotubes under a transverse magnetic field. Applied Mathematical Modelling, 36, 648-656(2012)
[20] Kiani, K. Transverse wave propagation in elastically confined single-walled carbon nanotubes subjected to longitudinal magnetic fields using nonlocal elasticity models. Physica E-Low-Dimensional Systems and Nanostructures, 45, 86-96(2012)
[21] Kiani, K. Magneto-elastio-dynamic analysis of an elastically confined conducting nanowire due to an axial magnetic shock. Physics Letters A, 376, 1679-1685(2012)
[22] Murmu, T., McCarthy, M. A., and Adhikari, S. Nonlocal elasticity based magnetic field affected vibration response of double single-walled carbon nanotube systems. Journal of Applied Physics, 111, 113511(2012)
[23] Wang, B., Deng, Z., Ouyang, H., and Zhang, K. Wave characteristics of single-walled fluidconveying carbon nano-tubes subjected to multi-physical fields. Physica E-Low-Dimensional Systems and Nanostructures, 52, 97-105(2013)
[24] Kiani, K. Vibration and instability of single-walled carbon nanotube in a three-dimensional magnetic field. Journal of Physical and Chemical Solids, 75, 15-22(2014)
[25] Rao, S. R. Vibration of Continuous Systems, John Wiley & Sons, New Jersey (2007)
[26] Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York (1944)
[27] Eringen, A. C. Nonlocal Continuum Field Theories, Springer-Verlag, New York (2002)
[28] Altan, B. and Aifantis, E. C. On the structure of the mode III crack-tip in gradient elasticity. Scripta Metallurgica et Materialia, 26, 319-324(1992)
[29] Gutkin, M. Y. and Aifantis, E. C. Screw dislocation in gradient elasticity. Scripta Materialia, 36, 129-135(1996)
[30] Gutkin, M. Y. and Aifantis, E. C. Dislocations and disclinations in gradient elasticity. Physica Status Solidi B-Basic Solid State Physics, 214, 245-284(1999)
[31] Gutkin, M. Y. and Aifantis, E. C. Dislocations in the theory of gradient elasticity. Scripta Materialia, 40, 559-566(1999)
[32] Aifantis, E. C. Update on a class of gradient theories. Mechanics of Materials, 35, 259-280(2003)
[33] Song, J., Shen, J., and Li, X. F. Effects of initial axial stress on wave propagating in carbon nanotubes using a generalized nonlocal model. Computational Material Science, 49, 518-523(2010)
[34] Shen, J., Wu, J. X., Song, J., Li, X. F., and Lee, K. Y. Flexural waves of carbon nanotubes based on generalized gradient elasticity. Physica Status Solidi B-Basic Solid State Physics, 249, 50-57(2012)
[35] Challamel, N., Rakotomanana, L., and Marrec, L. L. A dispersive wave equation using nonlocal elasticity. Comptes Rendus Mecanique, 337, 591-595(2009)
[36] Kecs, W. W. A generalized equation of longitudinal vibrations for elastic rods:the solution and uniqueness of a boundary initial value problem. European Journal of Mechanics A-Solids, 13, 135-145(1994)
[37] Güven, U. The investigation of the nonlocal longitudinal stress waves with modified couple stress theory. Acta Mechanica, 221, 321-325(2011)
[38] Güven, U. A more general investigation for the longitudinal stress waves in microrods with initial stress. Acta Mechanica, 223, 2065-2074(2012)
[39] Güven, U. Love-Bishop rod solution based on strain gradient elasticity theory. Comptes Rendus Mecanique, 342, 8-16(2014)
[40] Güven, U. A generalized nonlocal elasticity solution for the propagation of longitudinal stress waves in bars. European Journal of Mechanics A-Solids, 45, 75-79(2014)
[41] Güven, U. Two mode Mindlin-Herrmann rod solutions based on strain gradient elasticity theory. Zeitschrift für Angewandte Mathematik und Mechanik, 94, 1011-1016(2014)
[42] Narendar, S. Tera hertz wave propagation in uniform nanorods:a nonlocal continuum mechanics formulation including the effect of lateral inertia. Physica E-Low-Dimensional Systems and Nanostructures, 43, 1015-1020(2011)
[43] Wang, Y. Z., Li, F. M., and Kishimoto, K. Scale effects on the longitudinal wave propagation in nanoplates. Physica E-Low-Dimensional Systems and Nanostructures, 42, 1356-1360(2010)
[44] Sanchez-Portal, D., Artacho, E., and Soler, J. M. Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Physical Review B, 59, 12678-12688(1999) |