Applied Mathematics and Mechanics (English Edition) ›› 2021, Vol. 42 ›› Issue (2): 275-290.doi: https://doi.org/10.1007/s10483-021-2698-8
• Articles • Previous Articles Next Articles
Dan WANG1,2, Zhifeng HAO1, Fangqi CHEN2, Yushu CHEN3
Received:
2020-07-26
Revised:
2020-10-08
Published:
2021-01-30
Contact:
Dan WANG
E-mail:danwang2014518@hotmail.com
Supported by:
2010 MSC Number:
Dan WANG, Zhifeng HAO, Fangqi CHEN, Yushu CHEN. Nonlinear energy harvesting with dual resonant zones based on rotating system. Applied Mathematics and Mechanics (English Edition), 2021, 42(2): 275-290.
[1] DAQAQ, M. F., MASANA, R., ERTURK, A., and QUINN, D. D. On the role of nonlinearities in vibratory energy harvesting:a critical review and discussion. Applied Mechanics Reviews, 66, 040801(2014) [2] DENG, L., FANG, Y., WANG, D., and WEN, Z. A MEMS based piezoelectric vibration energy harvester for fault monitoring system. Microsystem Technologies, 24, 3637-3644(2018) [3] WEI, C. and JING, X. A comprehensive review on vibration energy harvesting:modelling and realization. Renewable and Sustainable Energy Reviews, 74, 1-18(2017) [4] CHEN, L. Q., JIANG, W. A., PANYAM, M., and DAQAQ, M. F. A broadband internally resonant vibratory energy harvester. ASME Journal of Vibration and Acoustics, 138(6), 061007(2016) [5] YANG, W. and TOWFIGHIAN, S. A hybrid nonlinear vibration energy harvester. Mechanical Systems and Signal Processing, 90, 317-333(2017) [6] LU, Z. Q., LI, K., DING, H., and CHEN, L. Q. Nonlinear energy harvesting based on a modified snap-through mechanism. Applied Mathematics and Mechanics (English Edition), 40(1), 167-180(2019) https://doi.org/10.1007/s10483-019-2408-9 [7] XIONG, L. Y., TANG, L. H., and MACE, B. R. A comprehensive study of 2:1 internal-resonancebased piezoelectric vibration energy harvesting. Nonlinear Dynamics, 91, 1817-1834(2018) [8] LIU, H. J. and GAO, X. M. Vibration energy harvesting under concurrent base and flow excitations with internal resonance. Nonlinear Dynamics, 96, 1067-1081(2019) [9] NIE, X. C., TAN, T., YAN, Z. M., YAN, Z. T., and HAJJ, M. R. Broadband and high-efficient L-shaped piezoelectric energy harvester based on internal resonance. International Journal of Mechanical Sciences, 159, 287-305(2019) [10] ZHOU, K., DAI, H. L., ABDELKEFIC, A., and NI, Q. Theoretical modeling and nonlinear analysis of piezoelectric energy harvesters with different stoppers. International Journal of Mechanical Sciences, 166, 105233(2020) [11] RUI, X., ZENG, Z., LI, Y., ZHANG, Y., YANG, Z., HUANG, X., and SHA, Z. Modeling and analysis of a rotational piezoelectric energy harvester with limiters. Journal of Mechanical Science and Technology, 33(11), 5169-5176(2019) [12] CAO, D. X., XIA, W., and HU, W. H. Low-frequency and broadband vibration energy harvester driven by mechanical impact based on layer-separated piezoelectric beam. Applied Mathematics and Mechanics (English Edition), 40(12), 1777-1790(2019) https://doi.org/10.1007/s10483-019-2542-5 [13] OWENS, B. A. M. and MANN, B. P. Linear and nonlinear electromagnetic coupling models in vibration-based energy harvesting. Journal of Sound and Vibration, 331, 922-937(2012) [14] FIROOZY, P., KHADEM, S. E., and POURKIAEE, S. M. Power enhancement of broadband piezoelectric energy harvesting using a proof mass and nonlinearities in curvature and inertia. International Journal of Mechanical Sciences, 133, 227-239(2017) [15] RUBES, O., BRABLC, M., and HADAS, Z. Nonlinear vibration energy harvester:design and oscillating stability analyses. Mechanical Systems and Signal Processing, 125, 170-184(2019) [16] HARNE, R. L. and WANG, K. W. Axial suspension compliance and compression for enhancing performance of a nonlinear vibration energy harvesting beam system. ASME Journal of Vibration and Acoustics, 138, 011004(2016) [17] ALEVRAS, P., THEODOSSIADES, S., and RAHNEJAT, H. On the dynamics of a nonlinear energy harvester with multiple resonant zones. Nonlinear Dynamics, 92, 1271-1286(2018) [18] TAI, W. C., LIU, M., YUAN, Y., and ZUO, L. On improvement of the frequency bandwidth of nonlinear vibration energy harvesters using a mechanical motion rectifier. ASME Journal of Vibration and Acoustics, 140, 051008(2018) [19] SHAN, G., WANG, D. F., SONG, J., FU, Y., and YANG, X. A spring-assisted adaptive bistable energy harvester for high output in low-excitation. Microsystem Technologies, 24, 3579-3588(2018) [20] LAI, S., WANG, C., and ZHANG, L. A nonlinear multi-stable piezomagnetoelastic harvester array for low-intensity, low-frequency, and broadband vibrations. Mechanical Systems and Signal Processing, 122, 87-102(2019) [21] JIANG, W. A., MA, X. D., HAN, X. J., CHEN, L. Q., and BI, Q. S. Broadband energy harvesting based on one-to-one internal resonance. Chinese Physics B, 29(10), 100503(2020) [22] TIAN, R. L., ZHAO, Z. J., and XU, Y. Variable scale-convex-peak method for weak signal detection. Science China Technological Sciences (2020) https://doi.org/10.1007/s11431-019-1530-4 [23] ZHOU, S. X., CAO, J., INMAN, D. J., LIN, J., and LI, D. Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. Journal of Sound and Vibration, 373, 223-235(2016) [24] WANG, X., WU, H., and YANG, B. Nonlinear multi-modal energy harvester and vibration absorber using magnetic softening spring. Journal of Sound and Vibration, 476, 115332(2020) [25] ZHANG, J., FANG, Z., SHU, C., ZHANG, J., ZHANG, Q., and LI, C. A rotational piezoelectric energy harvester for efficient wind energy harvesting. Sensors and Actuators A:Physical, 262, 123-129(2017) [26] SEO, J., JHANG, K. Y., LEE, H., and KIM, Y. C. Vibration energy harvesting technology for smart tire monitoring. Journal of Mechanical Science and Technology, 33(8), 3725-3732(2019) [27] MICEK, P. and GRZYBEK, D. Wireless stress sensor based on piezoelectric energy harvesting for a rotating shaft. Sensors and Actuators A:Physical, 301, 111744(2020) [28] HALIM, M. A., RANTZ, R., ZHANG, Q., GU, L., YANG, K., and ROUNDY, S. An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion. Applied Energy, 217, 66-74(2018) [29] TRIMBLE, A. Z., LANG, J. H., PABON, J., and SLOCUM, A. A device for harvesting energy from rotational vibrations. ASME Journal of Mechanical Design, 132(9), 091001(2010) [30] RAMEZANPOUR, R., NAHVI, H., and ZIAEI-RAD, S. A vibration-based energy harvester suitable for low-frequency, high amplitude environments:theoretical and experimental investigations. Journal of Intelligent Material Systems and Structures, 27(5), 642-665(2016) [31] XIE, Z., XIONG, J., ZHANG, D., WANG, T., SHAO, Y., and HUANG, W. Design and experimental investigation of a piezoelectric rotation energy harvester using bistable and frequency up-conversion mechanisms. Applied Sciences, 8, 1418(2018) [32] ZHANG, Y., ZHENG, R., NAKANO, K., and CARTMELL, M. P. Stabilising high energy orbit oscillations by the utilisation of centrifugal effects for rotating-tyre-induced energy harvesting. Applied Physics Letters, 112, 143901(2018) [33] LIU, Z., WANG, X., DING, S., ZHANG, R., and MCNABB, L. A new concept of speed amplified nonlinear electromagnetic vibration energy harvester through fixed pulley wheel mechanisms and magnetic springs. Mechanical Systems and Signal Processing, 126, 305-325(2019) [34] NAJDECKA, A., NARAYANAN, S., and WIERCIGROCH, M. Rotary motion of the parametric and planar pendulum under stochastic wave excitation. International Journal of Non-Linear Mechanics, 71, 30-38(2015) [35] NANDAKUMAR, K., WIERCIGROCH, M., and CHATTERJEE, A. Optimum energy extraction from rotational motion in a parametrically excited pendulum. Mechanics Research Communications, 43, 7-14(2012) [36] KIM, H., TAI, W. C., PARKER, J., and ZUO, L. Self-tuning stochastic resonance energy harvesting for rotating systems under modulated noise and its application to smart tires. Mechanical Systems and Signal Processing, 122, 769-785(2019) [37] DAI, Q. and HARNE, R. L. Charging power optimization for nonlinear vibration energy harvesting systems subjected to arbitrary, persistent base excitations. Smart Materials and Structures, 27, 015011(2018) [38] GU, L. and LIVERMORE, C. Compact passively self-tuning energy harvesting for rotating applications. Smart Materials and Structures, 21, 015002(2012) [39] ROUNDY, S. and TOLA, J. Energy harvester for rotating environments using offset pendulum and nonlinear dynamics. Smart Materials and Structures, 23(10), 105004(2014) [40] GUAN, M. and LIAO, W. H. Design and analysis of a piezoelectric energy harvester for rotational motion system. Energy Conversion and Management, 111, 239-244(2016) [41] COOLEY, C. G. and CHAI, T. Energy harvesting from the vibrations of rotating systems. ASME Journal of Vibration and Acoustics, 140, 021010(2018) [42] WANG, J. and LIAO, W. H. Attaining the high-energy orbit of nonlinear energy harvesters by load perturbation. Energy Conversion and Management, 192, 30-36(2019) [43] ZHANG, Y., ZHENG, R., SHIMONO, K., KAIZUKA, T., and NAKANO, K. Effectiveness testing of a piezoelectric energy harvester for an automobile wheel using stochastic resonance. Energy Conversion and Management, 16, 1727(2016) [44] WILLIAMAS, C. B. and YATES, R. B. Analysis of a micro-electric generator for microsystems. Sensors and Actuators A, 52, 8-11(1996) [45] HAO, Z. F., CAO, Q. J., and WIERCIGROCH, M. Two-sided damping constraint control for high-performance vibration isolation and end-stop impact protection. Nonlinear Dynamics, 86, 2129-2144(2016) [46] WANG, D., CHEN, Y. S., WIERCIGROCH, M., and CAO, Q. J. Bifurcation and dynamic response analysis of rotating blade excited by upstream vortices. Applied Mathematics and Mechanics (English Edition), 37(9), 1251-1274(2016) https://doi.org/10.1007/s10483-016-2128-6 |
[1] | Jie JING, Xiaoye MAO, Hu DING, Liqun CHEN. Parametric resonance of axially functionally graded pipes conveying pulsating fluid [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 239-260. |
[2] | Yanpeng YUE, Yongping WAN. Theoretical study on dynamic effective electroelastic properties of random piezoelectric composites with aligned inhomogeneities [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(4): 525-546. |
[3] | Weixing ZHANG, Wei ZHANG, Xiangying GUO. Vertical vibration control using nonlinear energy sink with inertial amplifier [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1721-1738. |
[4] | Dengbo ZHANG, Youqi TANG, Ruquan LIANG, Yuanmei SONG, Liqun CHEN. Internal resonance of an axially transporting beam with a two-frequency parametric excitation [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1805-1820. |
[5] | Yunfei LIU, Jun WANG, Jiaxin HU, Zhaoye QIN, Fulei CHU. Multiple internal resonances of rotating composite cylindrical shells under varying temperature fields [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(10): 1543-1554. |
[6] | Yunfei LIU, Zhaoye QIN, Fulei CHU. Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1:1 internal resonance [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(6): 805-818. |
[7] | Yong YANG, S. SAHMANI, B. SAFAEI. Couple stress-based nonlinear primary resonant dynamics of FGM composite truncated conical microshells integrated with magnetostrictive layers [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(2): 209-222. |
[8] | Chenxu QIANG, Yuxin HAO, Wei ZHANG, Jinqiang LI, Shaowu YANG, Yuteng CAO. Bandgaps and vibration isolation of local resonance sandwich-like plate with simply supported overhanging beam [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1555-1570. |
[9] | Jing WANG, Yilin ZHU, Bo ZHANG, Huoming SHEN, Juan LIU. Nonlocal and strain gradient effects on nonlinear forced vibration of axially moving nanobeams under internal resonance conditions [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(2): 261-278. |
[10] | Junda LI, Jianliang HUANG. Subharmonic resonance of a clamped-clamped buckled beam with 1:1 internal resonance under base harmonic excitations [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(12): 1881-1896. |
[11] | A. NIKPOURIAN, M. R. GHAZAVI, S. AZIZI. Size-dependent modal interactions of a piezoelectrically laminated microarch resonator with 3:1 internal resonance [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(10): 1517-1538. |
[12] | Xun WANG, Chunxia XUE, Haitao LI. Nonlinear primary resonance analysis for a coupled thermo-piezoelectric-mechanical model of piezoelectric rectangular thin plates [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(8): 1155-1168. |
[13] | Yuda HU, Bingbing MA. Magnetoelastic combined resonance and stability analysis of a ferromagnetic circular plate in alternating magnetic field [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(7): 925-942. |
[14] | Yunyue CONG, Houjun KANG, Tieding GUO. Analysis of in-plane 1:1:1 internal resonance of a double cable-stayed shallow arch model with cables' external excitations [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(7): 977-1000. |
[15] | Houjun KANG, Tieding GUO, Weidong ZHU, Junyi SU, Bingyu ZHAO. Dynamical modeling and non-planar coupled behavior of inclined CFRP cables under simultaneous internal and external resonances [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(5): 649-678. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||