Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (1): 25-36.doi: https://doi.org/10.1007/s10483-025-3210-9
Previous Articles Next Articles
Jue ZHU1,2, Longyuan LI3,†(), Ningtao ZHU1,4
Received:
2024-06-26
Revised:
2024-12-06
Online:
2025-01-03
Published:
2025-01-06
Contact:
Longyuan LI
E-mail:long-yuan.li@plymouth.ac.uk
Supported by:
2010 MSC Number:
Jue ZHU, Longyuan LI, Ningtao ZHU. Modification of Maxwell model for conductivity prediction of carbon nanotubes-filled polymer composites with tunneling effect. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 25-36.
Fig. 5
Variations of the EEC with the volume fraction of inclusions where lower and upper bounds are calculated with Eqs. (7) and (9) and the interpolated EEC is calculated with Eq. (14): (a) full range plot and (b) zoom plot for Vin<0.02, when Ei=500 S/m, EVTZ=5.0 S/m, Emm=0.001 S/m, λ=30, ρ=0.5r, and Vp=1.5% (color online)"
Table 1
Parametric values used in the prediction model"
Parameter | Validation (see | Validation (see | Validation (see | Note |
---|---|---|---|---|
0.35 | 0.35 | 0.35 | Assumed, based on experimental data* | |
50 | 50 | 50 | Assumed, based on experimental data** | |
9.0% | 0.15% | 0.08% | Taken from test data | |
1 800 (CFs), 180 (CNTs) | 650 | 2 500 | Assumed, based on test data | |
Assumed | ||||
Taken from test data | ||||
1.25 | 1.25 | 1.25 | Assumed | |
* According to Refs. [ | ||||
** Although straight CNTs have the aspect ratio |
[1] | CEBECI, H., DE VILLORIA, R. G., HART, A. J., and WARDLE, B. L. Multifunctional properties of high volume fraction aligned carbon nanotube polymer composites with controlled morphology. Composites Science and Technology, 69, 2649–2656 (2009) |
[2] | KIM, H., GAO, S., HONG, S., LEE, P. C., KIM, Y. L., HA, J. U., JEOUNG, S. K., and JUNG, Y. J. Multifunctional primer film made from percolation enhanced CNT/epoxy nanocomposite and ultrathin CNT network. Composites Part B: Engineering, 175, 107107 (2019) |
[3] | JU, J., KUANG, T., KE, X., ZENG, M., CHEN, Z., ZHANG, S., and PENG, X. Lightweight multifunctional polypropylene/carbon nanotubes/carbon black nanocomposite foams with segregated structure, ultralow percolation threshold and enhanced electromagnetic interference shielding performance. Composites Science and Technology, 193, 108116 (2020) |
[4] | YAN, F., LIU, L., LI, M., ZHANG, M. J., SHANG, L., XIAO, L. H., and AO, Y. H. One-step electrodeposition of Cu/CNT/CF multiscale reinforcement with substantially improved thermal/electrical conductivity and interfacial properties of epoxy composites. Composites Part A: Applied Science and Manufacturing, 125, 105530 (2019) |
[5] | YUAN, S. Q., ZHENG, Y., CHUA, C. K., YAN, Q. Y. and ZHOU, K. Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering. Composites Part A: Applied Science and Manufacturing, 105, 203–213 (2018) |
[6] | MÜLLER-KIRSTEN, H. J. W. Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd edition, World Scientific, Singapore (2012) |
[7] | HASHEMI, R. and WENG, G. J. A theoretical treatment of graphene nanocomposites with percolation threshold, tunnelling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon, 96, 474–490 (2016) |
[8] | PAYANDEHPEYMAN, J., MAZAHERI, M., and KHAMEHCHI, M. Prediction of electrical conductivity of polymer-graphene nanocomposites by developing an analytical model considering interphase, tunneling and geometry effects. Composites Communications, 21, 100364 (2020) |
[9] | HASHIN, Z. Analysis of composite materials — a survey. Applied Mechanics Review, 50(3), 481–505 (1983) |
[10] | TORQUATO, S. Random heterogeneous media: microstructure and improved bounds on effective properties. Applied Mechanics Review, 44(2), 37–76 (1991) |
[11] | LUX, F. Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. Journal of Materials Science, 28(2), 285–301 (1993) |
[12] | WEBER, L., DORN, J., and MORTENSEN, A. On the electrical conductivity of metal matrix composites containing high volume fractions of non-conducting inclusions. Acta Materialia, 51(11), 3199–3211 (2003) |
[13] | HU, N., KARUBE, Y., YAN, C., MASUDA, Z., and FUKUNAGA, H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Materials, 56(13), 2929–2936 (2008) |
[14] | HE, L. X. and TJONG, S. C. Carbon nanotube/epoxy resin composite: correlation between state of nanotube dispersion and Zener tunnelling parameters. Synthetic Metals, 162(24), 2277–2281 (2012) |
[15] | HE, L. X. and TJONG, S. C. Zener tunneling in polymer nanocomposites with carbonaceous fillers. Nanocrystalline Materials, 2nd edition, Elsevier, Oxford, 377–406 (2014) |
[16] | MARIANO, L. C., SOUZA, V. H. R., KOWALSKI, E. L., ROCCO, M. L. M., ZARBIN, A. J. G., KOEHLER, M., and ROMAN, L. S. Electrical and morphological study of carbon nanotubes/polyaniline composite films: a model to explain different tunneling regimes induced by a vertical electric field. Thin Solid Films, 636, 314–324 (2017) |
[17] | ZARE, Y. and RHEE, K. Y. A power model to predict the electrical conductivity of CNT reinforced nanocomposites by considering interphase, networks and tunnelling condition. Composites Part B: Engineering, 155, 11–18 (2018) |
[18] | ZARE, Y. and RHEE, K. Y. A simple model for electrical conductivity of polymer carbon nanotubes nanocomposites assuming the filler properties, interphase dimension, network level, interfacial tension and tunnelling distance. Composites Science and Technology, 155, 252–260 (2018) |
[19] | FANG, C., ZHANG, J. J., CHEN, X., and WENG, G. J. A Monte Carlo model with equipotential approximation and tunneling resistance for the electrical conductivity of carbon nanotube polymer composites. Carbon, 146, 125–138 (2019) |
[20] | HAGHGOO, M., ANSARI, R., HASSANZADEH-AGHDAM, M. K., and NANKALI, M. Analytical formulation for electrical conductivity and percolation threshold of epoxy multiscale nanocomposites reinforced with chopped carbon fibres and wavy carbon nanotubes considering tunnelling resistivity. Composites Part A: Applied Science and Manufacturing, 126, 105616 (2019) |
[21] | ZARE, Y. and RHEE, K. Y. Expression of characteristic tunnelling distance to control the electrical conductivity of carbon nanotubes-reinforced nanocomposites. Journal of Materials Research and Technology, 9(6), 15996–16005 (2020) |
[22] | XAVIER, P. A. F., BENOY, M. D., STEPHEN, S. K., and VARGHESE, T. Enhanced electrical properties of polyaniline carbon nanotube composites: analysis of temperature dependence of electrical conductivity using variable range hopping and fluctuation induced tunnelling models. Journal of Solid State Chemistry, 300, 122232 (2021) |
[23] | CHANDA, A., SINHA, S. K., and DATLA, N. V. Electrical conductivity of random and aligned nanocomposites: theoretical models and experimental validation. Composites Part A: Applied Science and Manufacturing, 149, 106543 (2021) |
[24] | HAGHGOO, M., ANSARI, R., and HASSANZADEH-AGHDAM, M. K. Monte Carlo analytical-geometrical simulation of piezoresistivity and electrical conductivity of polymeric nanocomposites filled with hybrid carbon nanotubes/graphene nanoplatelets. Composites Part A: Applied Science and Manufacturing, 152, 106716 (2022) |
[25] | WEI, S., ZHANG, Y., LV, H., DENG, L., and CHEN, G. SWCNT network evolution of PEDOT:PSS/SWCNT composites for thermoelectric application. Chemical Engineering Journal, 428, 131137 (2022) |
[26] | HAGHGOO, M., ANSARI, R., HASSANZADEH-AGHDAM, M. K., JANG, S. H., and NANKALI, M. Simulation of the role of agglomerations in the tunneling conductivity of polymer/carbon nanotube piezoresistive strain sensors. Composites Science and Technology, 243, 110242 (2023) |
[27] | ZARE, Y. and RHEE, K. Y. Development of a conventional model to predict the electrical conductivity of polymer/carbon nanotubes nanocomposites by interphase, waviness and contact effects. Composites Part A: Applied Science and Manufacturing, 100, 305–312 (2017) |
[28] | KIRADJIEV, K. B., HALVORSEN, S. A. A., VAN GORDER, R. A., and HOWISON, S. D. Maxwell-type models for the effective thermal conductivity of a porous material with radiative transfer in the voids. International Journal of Thermal Sciences, 145, 106009 (2019) |
[29] | CARE, S. and HERVE, E. Application of a n-phase model to the diffusion coefficient of chloride in mortar. Transport in Porous Media, 56(2), 119–135 (2004) |
[30] | LEI, X., ZHANG, X. R., SOON, A. R., GONG, S., WANG, Y., LUO, L. X., LI, T., ZHU, Z. H., and LI, Z. Investigation of electrical conductivity and electromagnetic interference shielding performance of Au@CNT/sodium alginate/polydimethylsiloxane flexible composite. Composites Part A: Applied Science and Manufacturing, 130, 105762 (2020) |
[31] | LI, Y., XUE, B., YANG, S., CHENG, Z., XIE, L., and ZHENG, Q. Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding. Chemical Engineering Journal, 410, 128356 (2021) |
[32] | FANG, Y., LI, L. Y., and JANG, S. H. Calculation of electrical conductivity of self-sensing carbon nanotube composites. Composites Part B: Engineering, 199, 108314 (2020) |
[33] | FANG, Y., LI, L. Y., and JANG, S. H. Piezoresistive modelling of CNTs reinforced composites under mechanical loadings. Composites Science and Technology, 208, 108757 (2021) |
[34] | FANG, Y., HU, S. W., LI, L. Y., and JANG, S. H. Percolation threshold and effective properties of CNTs-reinforced two-phase composite materials. Materials Today Communications, 29, 102977 (2021) |
[35] | LI, Z. W. and LI, L. Y. Analysis of electrical conductivity of carbon nanotube-reinforced two-phase composites. Composites Communications, 35, 101305 (2022) |
[36] | SEDLÁKOVÁ, Z., CLARIZIA, G., BERNARDO, P., JANSEN, J. C., SLOBODIAN, P., SVOBODA, P., KARASZOVA, M., FRIESS, K., and IZAK, P. I. Carbon nanotube- and carbon fiber-reinforcement of ethylene-octene copolymer membranes for gas and vapor separation. Membranes, 4(1), 20–39 (2014) |
[37] | KIM, Y. J., SHIN, T. S., CHOI, H. D., KWON, J. H., CHUNG, Y. C., and YOON, H. G. Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon, 43(1), 23–30 (2005) |
[38] | LISUNOVA, M., MAMUNYA, Y. P., LEBOVKA, N., and MELEZHYK, A. Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. European Polymer Journal, 43(3), 949–958 (2007) |
[1] | Chentong GAO, Huiyu SUN, Jianping GU, W. M. HUANG. Dynamic modeling of a three-dimensional braided compositethin plate considering braiding directions [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 123-138. |
[2] | S. SAURABH, R. KIRAN, D. SINGH, R. VAISH, V. S. CHAUHAN. A comprehensive investigation on nonlinear vibration andbending characteristics of bio-inspired helicoidallaminated composite structures [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 81-100. |
[3] | Long WANG, Lei ZHANG, Guowei HE. Chien-physics-informed neural networks for solving singularly perturbed boundary-layer problems [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1467-1480. |
[4] | Lele REN, Wei ZHANG, Yufei ZHANG. Inter-well internal resonance analysis of rectangular asymmetric cross-ply bistable composite laminated cantilever shell under transverse foundation excitation [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(8): 1353-1370. |
[5] | Yuxin YAO, Yuansheng MA, Fang HONG, Kai ZHANG, Tingting WANG, Haijun PENG, Zichen DENG. On Klein tunneling of low-frequency elastic waves in hexagonal topological plates [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1139-1154. |
[6] | Lele REN, Wei ZHANG, Ting DONG, Yufei ZHANG. Snap-through behaviors and nonlinear vibrations of a bistable composite laminated cantilever shell: an experimental and numerical study [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 779-794. |
[7] | Yiming CAO, Hui MA, Xumin GUO, Bingfeng ZHAO, Hui LI, Xin WANG, Bing WANG. Comparison of nonlinear modeling methods for the composite rubber clamp [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 763-778. |
[8] | Y. ZARE, M. T. MUNIR, G. J. WENG, K. Y. RHEE. Supposition of graphene stacks to estimate the contact resistance and conductivity of nanocomposites [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 663-676. |
[9] | Meiqi WU, Peng LV, Hongyuan LI, Jiale YAN, Huiling DUAN, Wei ZHANG. Theoretical and experimental investigation of the resonance responses and chaotic dynamics of a bistable laminated composite shell in the dynamic snap-through mode [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 581-602. |
[10] | Yinxiao ZHANG, Zheng GONG, Ernian PAN, Chao ZHANG. A novel solution of rectangular composite laminates under oblique low-velocity impacts [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2165-2182. |
[11] | J. A. OTERO, Y. ESPINOSA-ALMEYDA, R. RODRÍGUEZ-RAMOS, J. MERODIO. Semi-analytical finite element method applied for characterizing micropolar fibrous composites [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2147-2164. |
[12] | F. SHIRDELAN, M. MOHAMMADIMEHR, F. BARGOZINI. Control and vibration analyses of a sandwich doubly curved micro-composite shell with honeycomb, truss, and corrugated cores based on the fourth-order shear deformation theory [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1773-1790. |
[13] | Pan WANG, Xiangcheng HAN, Weibin WEN, Baolin WANG, Jun LIANG. Galerkin-based quasi-smooth manifold element (QSME) method for anisotropic heat conduction problems in composites with complex geometry [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 137-154. |
[14] | Huifeng XI, Guicheng ZHAO, O. BRUHNS, Siyu WANG, Heng XIAO. Exact simulation for direction-dependent large elastic strain responses of soft fibre-reinforced composites [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1497-1510. |
[15] | Ying MENG, Xiaoye MAO, Hu DING, Liqun CHEN. Nonlinear vibrations of a composite circular plate with a rigid body [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(6): 857-876. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||