Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (12): 2281-2296.doi: https://doi.org/10.1007/s10483-025-3323-6
Previous Articles Next Articles
Received:2025-07-29
Revised:2025-09-17
Published:2025-11-28
Contact:
Li LI, E-mail: lili_em@hust.edu.cnSupported by:2010 MSC Number:
Ruozhen ZHANG, Li LI. Size-dependent elastic properties of spherical nanoparticles: a nonlocality-emerged surface model. Applied Mathematics and Mechanics (English Edition), 2025, 46(12): 2281-2296.
| [1] | QUARESIMIN, M., SALVIATO, M., and ZAPPALORTO, M. Strategies for the assessment of nanocomposite mechanical properties. Composites Part B: Engineering, 43(5), 2290–2297 (2012) |
| [2] | GUO, D., XIE, G. X., and LUO, J. B. Mechanical properties of nanoparticles: basics and applications. Journal of Physics D: Applied Physics, 47(1), 013001 (2014) |
| [3] | JU, S. P., CHEN, C. W., CHEN, H. L., CHEN, H. T., and CHEN, H. Y. Tailoring mechanical performance in bulk nanoparticle-structured ZnO and Al2O3: insights from deep learning potential molecular dynamics simulations. Materials Today Communications, 42, 111161 (2025) |
| [4] | BIAN, K. F., BASSETT, W., WANG, Z. W., and HANRATH, T. The strongest particle: size-dependent elastic strength and Debye temperature of PbS nanocrystals. The Journal of Physical Chemistry Letters, 5(21), 3688–3693 (2014) |
| [5] | SHARMA, A., HICKMAN, J., GAZIT, N., RABKIN, E., and MISHIN, Y. Nickel nanoparticles set a new record of strength. Nature Communications, 9, 4102 (2018) |
| [6] | UCHIC, M. D., DIMIDUK, D. M., FLORANDO, J. N., and NIX, W. D. Sample dimensions influence strength and crystal plasticity. Science, 305(5686), 986–989 (2004) |
| [7] | BUFFAT, P. and BOREL, J. P. Size effect on the melting temperature of gold particles. Physical Review A, 13(6), 2287–2298 (1976) |
| [8] | AMARA, H., NELAYAH, J., CREUZE, J., CHMIELEWSKI, A., ALLOYEAU, D., RICOLLEAU, C., and LEGRAND, B. Effect of size on the surface energy of noble metal nanoparticles from analytical and numerical approaches. Physical Review B, 105(16), 165403 (2022) |
| [9] | WANG, W. X., NIU, L. S., ZHANG, Y. Y., and LIN, E. Q. Tensile mechanical behaviors of cubic silicon carbide thin films. Computational Materials Science, 62, 195–202 (2012) |
| [10] | LIANG, L. H., MA, H. S., and WEI, Y. G. Size-dependent elastic modulus and vibration frequency of nanocrystals. Journal of Nanomaterials, 2011(1), 670857 (2011) |
| [11] | ZHANG, T. Y., WANG, Z. J., and CHAN, W. K. Eigenstress model for surface stress of solids. Physical Review B, 81(19), 195427 (2010) |
| [12] | ARMSTRONG, P. and PEUKERT, W. Size effects in the elastic deformation behavior of metallic nanoparticles. Journal of Nanoparticle Research, 14(12), 1288 (2012) |
| [13] | CHANG, T. A molecular based anisotropic shell model for single-walled carbon nanotubes. Journal of the Mechanics and Physics of Solids, 58(9), 1422–1433 (2010) |
| [14] | STROZZI, M., ELISHAKOFF, I. E., MANEVITCH, L. I., and GENDELMAN, O. V. Applicability and limitations of Donnell shell theory for vibration modelling of double-walled carbon nanotubes. Thin-Walled Structures, 178, 109532 (2022) |
| [15] | QI, W. H. and WANG, M. P. Size effect on the cohesive energy of nanoparticle. Journal of Materials Science Letters, 21(22), 1743–1745 (2002) |
| [16] | KUSHCH, V. I. Atomistic and continuum modeling of nanoparticles: elastic fields, surface constants, and effective stiffness. International Journal of Engineering Science, 183, 103806 (2023) |
| [17] | ESPINOSA, I. M. P., JACOBS, T. D. B., and MARTINI, A. Atomistic simulations of the elastic compression of platinum nanoparticles. Nanoscale Research Letters, 17(1), 96 (2022) |
| [18] | ERBÌ, M., AMARA, H., and GATTI, R. Tuning elastic properties of metallic nanoparticles by shape controlling: from atomistic to continuous models. Small, 19(47), 2302116 (2023) |
| [19] | BIAN, J. J., YUAN, W. K., YANG, L., DING, Y., YU, X. H., SHAO, Z. S., ZHANG, H., and WANG, G. F. Influence of planar defects on the mechanical behaviors of spherical metallic nanoparticles. Physica Scripta, 100, 015921 (2025) |
| [20] | WEI, Y. G. Particulate size effects in the particle-reinforced metal-matrix composites. Acta Mechanica Sinica, 17(1), 45–58 (2001) |
| [21] | MARANGANTI, R. and SHARMA, P. Length scales at which classical elasticity breaks down for various materials. Physical Review Letters, 98(19), 195504 (2007) |
| [22] | HOLEC, D., LÖFLER, L., ZICKLER, G. A., VOLLATH, D., and FISCHER, F. D. Surface stress of gold nanoparticles revisited. International Journal of Solids and Structures, 224, 111044 (2021) |
| [23] | ALAM, M. M., PINFIELD, V. J., LUPPÉ, F., and MARÉCHAL, P. Effective dynamic properties of random complex media with spherical particles. The Journal of the Acoustical Society of America, 145(6), 3727–3740 (2019) |
| [24] | CHEN, C. Q., SHI, Y., ZHANG, Y. S., ZHU, J., and YAN, Y. J. Size dependence of Young’s modulus in ZnO nanowires. Physical Review Letters, 96(7), 075505 (2006) |
| [25] | CHANG, T. H. and ZHU, Y. A microelectromechanical system for thermomechanical testing of nanostructures. Applied Physics Letters, 103(26), 263114 (2013) |
| [26] | ASTHANA, A., MOMENI, K., PRASAD, A., YAP, Y. K., and YASSAR, R. S. In situ observation of size-scale effects on the mechanical properties of ZnO nanowires. Nanotechnology, 22(26), 265712 (2011) |
| [27] | GURTIN, M. E. and IAN MURDOCH, A. Surface stress in solids. International Journal of Solids and Structures, 14(6), 431–440 (1978) |
| [28] | WANG, J., DUAN, H. L., HUANG, Z. P., and KARIHALOO, B. L. A scaling law for properties of nano-structured materials. Proceedings: Mathematical, Physical and Engineering Sciences, 462(2069), 1355–1363 (2006) |
| [29] | DUAN, H. L., WANG, J., and KARIHALOO, B. L. Theory of elasticity at the nanoscale. Advances in Applied Mechanics, 42, 1–68 (2009) |
| [30] | BAẐANT, Z. P. and JIRÁSEK, M. Nonlocal integral formulations of plasticity and damage: survey of progress. Journal of Engineering Mechanics, 128(11), 1119–1149 (2002) |
| [31] | ERINGEN, A. C. Nonlocal Continuum Field Theories, Springer, New York (2002) |
| [32] | LI, L., LIN, R. M., and NG, T. Y. Contribution of nonlocality to surface elasticity. International Journal of Engineering Science, 152, 103311 (2020) |
| [33] | LI, L., LIN, R. M., and HU, Y. J. Cross-section effect on mechanics of nonlocal beams. Archive of Applied Mechanics, 91(4), 1541–1556 (2021) |
| [34] | LI, L., HU, Y. J., and LI, X. B. Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. International Journal of Mechanical Sciences, 115-116, 135–144 (2016) |
| [35] | GUINOVART-SANJUÁN, D., MOHAPATRA, R., RODRÍGUEZ-RAMOS, R., ESPINOSA-ALMEYDA, Y., and RODRÍGUEZ-BERMÚDEZ, P. Influence of nonlocal elasticity tensor and flexoelectricity in a rod: an asymptotic homogenization approach. International Journal of Engineering Science, 193, 103960 (2023) |
| [36] | TANG, H. S., LI, L., HU, Y. J., MENG, W. S., and DUAN, K. Vibration of nonlocal strain gradient beams incorporating Poisson’s ratio and thickness effects. Thin-Walled Structures, 137, 377–391 (2019) |
| [37] | BELARBI, M. O., HOUARI, M. S. A., DAIKH, A. A., GARG, A., MERZOUKI, T., CHALAK, H. D., and HIRANE, H. Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory. Composite Structures, 264, 113712 (2021) |
| [38] | REDDY, J. N. Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science, 45(2), 288–307 (2007) |
| [39] | DING, W., PATNAIK, S., and SEMPERLOTTI, F. Transversely heterogeneous nonlocal Timoshenko beam theory: a reduced-order modeling via distributed-order fractional operators. Thin-Walled Structures, 197, 111608 (2024) |
| [40] | EBRAHIMI, F., DABBAGH, A., and RABCZUK, T. On wave dispersion characteristics of magnetostrictive sandwich nanoplates in thermal environments. European Journal of Mechanics-A/Solids, 85, 104130 (2021) |
| [41] | SHARIATI, M., AZIZI, B., HOSSEINI, M., and SHISHESAZ, M. On the calibration of size parameters related to non-classical continuum theories using molecular dynamics simulations. International Journal of Engineering Science, 168, 103544 (2021) |
| [42] | LU, P., ZHANG, P. Q., LEE, H. P., WANG, C. M., and REDDY, J. N. Non-local elastic plate theories. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463, 3225–3240 (2007) |
| [43] | JAFARINEZHAD, M., SBURLATI, R., and CIANCI, R. Static and free vibration analysis of functionally graded annular plates using stress-driven nonlocal theory. European Journal of Mechanics-A/Solids, 99, 104955 (2023) |
| [44] | LIU, W. and WANG, X. D. Nonlocal elasticity theory for radial vibration of composite nanoscale spherical shells via wave approach. Journal of Vibration and Control, 31, 15–16 (2024) |
| [45] | WANG, Z. and CHEN, Y. Assessment of multi-physical field effects on nonlinear static stability behavior of nanoshells based on a numerical approach. Steel and Composite Structures, 46(4), 513–523 (2023) |
| [46] | XU, X. Z., SHAHSAVARI, D., and KARAMI, B. On the forced mechanics of doubly-curved nanoshell. International Journal of Engineering Science, 168, 103538 (2021) |
| [47] | SANDER, D. Surface stress: implications and measurements. Current Opinion in Solid State and Materials Science, 7(1), 51–57 (2003) |
| [48] | EREMEYEV, V. A. On effective properties of materials at the nano- and microscales considering surface effects. Acta Mechanica, 227(1), 29–42 (2016) |
| [49] | SHENOY, V. B. Size-dependent rigidities of nanosized torsional elements. International Journal of Solids and Structures, 39(15), 4039–4052 (2002) |
| [50] | DINGREVILLE, R., QU, J. M., and MOHAMMED, C. Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. Journal of the Mechanics and Physics of Solids, 53(8), 1827–1854 (2005) |
| [51] | HUANG, Z. X., THOMSON, P., and DI, S. L. Lattice contractions of a nanoparticle due to the surface tension: a model of elasticity. Journal of Physics and Chemistry of Solids, 68(4), 530–535 (2007) |
| [52] | HAZARIKA, A., PERETZ, E., DIKOVSKY, V., SANTRA, P. K., SHNECK, R. Z., SARMA, D. D., and MANASSEN, Y. STM verification of the reduction of the Young’s modulus of CdS nanoparticles at smaller sizes. Surface Science, 630, 89–95 (2014) |
| [53] | LIM, C. W., ZHANG, G., and REDDY, J. N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 78, 298–313 (2015) |
| [54] | TONG, L. H., YU, Y., HU, W. T., SHI, Y. F., and XU, C. J. On wave propagation characteristics in fluid saturated porous materials by a nonlocal Biot theory. Journal of Sound and Vibration, 379, 106–118 (2016) |
| [55] | SAFRONOV, I. V., SHYMANSKI, V. I., UGLOV, V. V., KVASOV, N. T., and DOROZHKIN, N. N. Modeling of microstructure and elastic properties of nc-TiN/a-Si3N4 nanocomposite. Computational Materials Science, 123, 256–262 (2016) |
| [1] | C. G. PAVITHRA, B. J. GIREESHA, S. SUSHMA, K. J. GOWTHAM. Analysis of convective-radiative heat transfer in dovetail longitudinal fins with shape-dependent hybrid nanofluids: a study using the Hermite wavelet method [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 357-372. |
| [2] | Wei LU, Shuo CHEN, Zhiyuan YU, Jiayi ZHAO. Simulation of nanofluid natural convection based on single-particle hydrodynamics in energy-conserving dissipative particle dynamics (eDPD) [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(8): 1429-1446. |
| [3] | S. I. ABDELSALAM, A. Z. ZAHER. Biomimetic amelioration of zirconium nanoparticles on a rigid substrate over viscous slime—a physiological approach [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1563-1576. |
| [4] | Pei ZHANG, P. SCHIAVONE, Hai QING. Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2071-2092. |
| [5] | Hui LI, Bocheng DONG, Zhijiang GAO, Jing ZHAO, Haiyang ZHANG, Xiangping WANG, Qingkai HAN. Analytical modeling and vibration analysis of fiber reinforced composite hexagon honeycomb sandwich cylindrical-spherical combined shells [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(9): 1307-1322. |
| [6] | Wei PENG, Like CHEN, Tianhu HE. A modified fractional-order thermo-viscoelastic model and its application to a polymer micro-rod heated by a moving heat source [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 507-522. |
| [7] | M. G. REDDY, S. A. SHEHZAD. Molybdenum disulfide and magnesium oxide nanoparticle performance on micropolar Cattaneo-Christov heat flux model [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(4): 541-552. |
| [8] | S. A. SHEHZAD, M. SHEIKHOLESLAMI, T. AMBREEN, A. SALEEM, A. SHAFEE. Numerically simulated behavior of radiative Fe3O4 and multi-walled carbon nanotube hybrid nanoparticle flow in presence of Lorentz force [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(3): 347-356. |
| [9] | B. MAHANTHESH, K. THRIVENI. Nanoparticle aggregation effects on radiative heat transport of nanoliquid over a vertical cylinder with sensitivity analysis [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(3): 331-346. |
| [10] | Ruifang SHI, Jianzhong LIN, Hailin YANG, Mingzhou YU. Distribution of non-spherical nanoparticles in turbulent flow of ventilation chamber considering fluctuating particle number density [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(3): 317-330. |
| [11] | Chunxiao XIA, Wenlong XU, Guohua NIE. Dynamic quasi-continuum model for plate-type nano-materials and analysis of fundamental frequency [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(1): 85-94. |
| [12] | S. A. SHEHZAD, T. MUSHTAQ, Z. ABBAS, A. RAUF, S. U. KHAN, I. TLILI. Dynamics of bioconvection flow of micropolar nanoparticles with Cattaneo-Christov expressions [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(9): 1333-1344. |
| [13] | A. AHMED, M. KHAN, J. AHMED, A. HAFEEZ. Von Kármán rotating flow of Maxwell nanofluids featuring the Cattaneo-Christov theory with a Buongiorno model [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(8): 1195-1208. |
| [14] | S. A. SHEHZAD, S. U. KHAN, Z. ABBAS, A. RAUF. A revised Cattaneo-Christov micropolar viscoelastic nanofluid model with combined porosity and magnetic effects [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(3): 521-532. |
| [15] | Xuelan ZHANG, Mingyao LUO, Peilai TAN, Liancun ZHENG, Chang SHU. Magnetic nanoparticle drug targeting to patient-specific atherosclerosis: effects of magnetic field intensity and configuration [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(2): 349-360. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

Email Alert
RSS