Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (2): 357-372.doi: https://doi.org/10.1007/s10483-025-3218-9
Previous Articles Next Articles
C. G. PAVITHRA, B. J. GIREESHA†(), S. SUSHMA, K. J. GOWTHAM
Received:
2024-08-12
Revised:
2024-12-15
Online:
2025-02-03
Published:
2025-02-02
Contact:
Corresponding author: B. J. GIREESHA, E-mail: bjgireesu@gmail.com2010 MSC Number:
C. G. PAVITHRA, B. J. GIREESHA, S. SUSHMA, K. J. GOWTHAM. Analysis of convective-radiative heat transfer in dovetail longitudinal fins with shape-dependent hybrid nanofluids: a study using the Hermite wavelet method. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 357-372.
Table 4
Comparison of the present work with previous studies"
Hoshyar et al. (HPM)[ | Gireesha et al.[ | Present result | |
---|---|---|---|
0 | 1 | 1 | 1 |
0.2 | 0.975 973 539 | 0.975 973 537 | 0.975 973 531 2 |
0.4 | 0.957 555 090 | 0.957 555 088 | 0.957 555 079 4 |
0.6 | 0.944 540 815 | 0.944 540 812 | 0.944 540 801 8 |
0.8 | 0.936 788 323 | 0.936 788 321 | 0.936 788 309 2 |
1 | 0.934 213 444 | 0.934 213 441 | 0.934 213 428 3 |
[1] | KRAUS, A. D., AZIZ, A., WELTY, J., and SEKULIC, D. P. Extended surface heat transfer. Applied Mechanics Reviews, 54(5), B92–B92 (2001) |
[2] | KIWAN, S. Thermal analysis of natural convection porous fins. Transport in Porous Media, 67, 17–29 (2007) |
[3] | GORLA, R. S. R. and BAKIER, A. Y. Thermal analysis of natural convection and radiation in porous fins. International Communications in Heat and Mass Transfer, 38(5), 638–645 (2011) |
[4] | AZIZ, A. and TORABI, M. Convective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coefficient, and surface emissivity with temperature. Heat Transfer-Asian Research, 41(2), 99–113 (2012) |
[5] | ATOUEI, S. A., HOSSEINZADEH, K., HATAMI, M., GHASEMI, S. E., SAHEBI, S. A. R., and GANJI, D. D. Heat transfer study on convective-radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods. Applied Thermal Engineering, 89, 299–305 (2015) |
[6] | TORABI, M. and AZIZ, A. Thermal performance and efficiency of convective-radiative T-shaped fins with temperature dependent thermal conductivity, heat transfer coefficient and surface emissivity. International Communications in Heat and Mass Transfer, 39(8), 1018–1029 (2012) |
[7] | DARVISHI, M. T., GORLA, R. S. R., KHANI, F., and GIREESHA, B. J. Thermal analysis of natural convection and radiation in a fully wet porous fin. International Journal of Numerical Methods for Heat and Fluid Flow, 26(8), 2419–2431(2016) |
[8] | GIREESHA, B. J. and SOWMYA, G. Heat transfer analysis of an inclined porous fin using differential transform method. International Journal of Ambient Energy, 43(1), 3189–3195 (2022) |
[9] | AKBAR, N. S., AKRAM, J., HUSSAIN, M. F., MARAJ, E. N., and MUHAMMAD, T. Thermal storage study and enhancement of heat transfer through hybrid Jeffrey nanofluid flow in ducts under peristaltic motion with entropy generation. Thermal Science and Engineering Progress, 49, 102463 (2024) |
[10] | BHANJA, D., KUNDU, B., and AZIZ, A. Enhancement of heat transfer from a continuously moving porous fin exposed in convective-radiative environment. Energy Conversion and Management, 88, 842–853 (2014) |
[11] | TURKYILMAZOGLU, M. Heat transfer from moving exponential fins exposed to heat generation. International Journal of Heat and Mass Transfer, 116, 346–351 (2018) |
[12] | FALLAH-NAJAFABADI, M., TALEBI ROSTAMI, H., HOSSEINZADEH, K., and DOMIRI GANJI, D. Thermal analysis of a moving fin using the radial basis function approximation. Heat Transfer, 50(8), 7553–7567 (2021) |
[13] | AKBAR, N. S., MARAJ, E. N., SHAH, S. I., and MUHAMMAD, T. Nano particle distribution in blood via electroosmotic peristaltic flow in a non-uniform wavy membrane base capillaries. Sensors and Actuators A: Physical, 376, 115626 (2024) |
[14] | KEERTHI, M. L., GIREESHA, B. J., and SOWMYA, G. Numerical investigation of efficiency of fully wet porous convective-radiative moving radial fin in the presence of shape-dependent hybrid nanofluid. International Communications in Heat and Mass Transfer, 138, 106341 (2022) |
[15] | RAMZAN, M., KUMAM, P., LONE, S. A., SEANGWATTANA, T., SAEED, A., and GALAL, A. M. A theoretical analysis of the ternary hybrid nanofluid flows over a non-isothermal and non-isosolutal multiple geometries. Heliyon, 9(4), e14875 (2023) |
[16] | AKBAR, N. S., AKRAM, J., FIAZ HUSSAIN, M., MARAJ, E. N., and MUHAMMAD, T. Hybrid nanofluid flow and heat transfer in symmetric porous ducts with CuO nanoparticles and multi-walled carbon nanotubes under peristaltic motion. Modern Physics Letters B, 38, 2450333 (2024) |
[17] | KUMBINARASAIAH, S. and RAGHUNATHA, K. R. The applications of Hermite wavelet method to nonlinear differential equations arising in heat transfer. International Journal of Thermofluids, 9, 100066 (2021) |
[18] | SHIRALASHETTI, S. C. and SRINIVASA, K. Hermite wavelets method for the numerical solution of linear and nonlinear singular initial and boundary value problems. Computational Methods for Differential Equations, 7(2), 177–198 (2019) |
[19] | SHIRALASHETTI, S. C., HOOGAR, B. S., and KUMBINARASAIAH, S. Hermite wavelet-based method for the numerical solution of linear and nonlinear delay differential equations. International Journal of Engineering, Science and Mathematics, 6(8), 71–79 (2017) |
[20] | AMANULLAH, YOUSAF, M., ZEB, S., AKRAM, M., HUSSAIN, S. M., and RO, J. S. Hermite wavelet method for approximate solution of higher order boundary value problems of ordinary differential equations. Fractals, 31(2), 2340032 (2023) |
[21] | GIREESHA, B. J., KEERTHI, M. L., and ESHWARAPPA, K. M. Heat transfer analysis of longitudinal fins of trapezoidal and dovetail profile on an inclined surface. Physica Scripta, 96(12), 125209 (2021) |
[22] | ARIF, M., DI PERSIO, L., KUMAM, P., WATTHAYU, W., and AKGÜL, A. Heat transfer analysis of fractional model of couple stress Casson tri-hybrid nanofluid using dissimilar shape nanoparticles in blood with biomedical applications. Scientific Reports, 13(1), 4596 (2023) |
[23] | PAVITHRA, C. G. and GIREESHA, B. J. Heat transfer in a wet porous moving inclined longitudinal fin exposed to convection and radiation in the presence of shape-dependent hybrid nanofluid: Adomian decomposition Sumudu transformation approach. Journal of Molecular Liquids, 393, 123582 (2024) |
[24] | HOSHYAR, H. A., RAHIMIPETROUDI, I., GANJI, D. D., and MAJIDIAN, A. R. Thermal performance of porous fins with temperature-dependent heat generation via the homotopy perturbation method and collocation method. Journal of Applied Mathematics and Computational Mechanics, 14(4), 53–65 (2015) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||