[1] LECUN, Y., BENGIO, Y., and HINTON, G. Deep learning. nature, 521(7553), 436-444(2015) [2] MIKOLOV, T., DEORAS, A., POVEY, D., BURGET, L., and ČERNOCKỲ, J. Strategies for training large scale neural network language models. 2011 IEEE Workshop on Automatic Speech Recognition & Understanding, Hawaii, 196-201(2011) [3] HINTON, G., DENG, L., YU, D., DAHL, G., MOHAMED, A. R., JAITLY, N., SENIOR, A., VANHOUCKE, V., NGUYEN, P., SAINATH, T. N., and KINGSBURY, B. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine, 29(6), 82-97(2012) [4] SAINATH, T. N., MOHAMED, A. R., KINGSBURY, B., and RAMABHADRAN, B. Deep convolutional neural networks for LVCSR. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Canada, 8614-8618(2013) [5] KRIZHEVSKY, A., SUTSKEVER, I., and HINTON, G. E. Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90(2017) [6] TOMPSON, J. J., JAIN, A., LECUN, Y., and BREGLER, C. Joint training of a convolutional network and a graphical model for human pose estimation. Advances in Neural Information Processing Systems, 271799-1807(2014) [7] RAISSI, M., PERDIKARIS, P., and KARNIADAKIS, G. E. Physics-informed neural networks:a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686-707(2019) [8] WEINAN, E. and YU, B. The deep ritz method:a deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 6(1), 1-12(2018) [9] HAN, J., JENTZEN, A., and WEINAN, E. Solving high-dimensional partial differential equations using deep learning. Proceedings of the National Academy of Sciences, 115(34), 8505-8510(2018) [10] LONG, Z., LU, Y., MA, X., and DONG, B. PDE-Net:learning PDEs from data. International Conference on Machine Learning, 80, 3208-3216(2018) [11] LONG, Z., LU, Y., and DONG, B. PDE-Net 2.0:learning PDEs from data with a numericsymbolic hybrid deep network. Journal of Computational Physics, 399, 108925(2019) [12] SIRIGNANO, J. and SPILIOPOULOS, K. DGM:a deep learning algorithm for solving partial differential equations. Journal of computational physics, 375, 1339-1364(2018) [13] PANG, G., LU, L., and KARNIADAKIS, G. E. FPINNs:fractional physics-informed neural networks. SIAM Journal on Scientific Computing, 41(4), 2603-2626(2019) [14] MENG, X. and KARNIADAKIS, G. E. A composite neural network that learns from multifidelity data:application to function approximation and inverse PDE problems. Journal of Computational Physics, 401, 109020(2020) [15] ZHANG, D., LU, L., GUO, L., and KARNIADAKIS, G. E. Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. Journal of Computational Physics, 397, 108850(2019) [16] LU, L., MENG, X., MAO, Z., and KARNIADAKIS, G. E. DeepXDE:a deep learning library for solving differential equations. SIAM Review, 63(1), 208-228(2021) [17] RAISSI, M., YAZDANI, A., and KARNIADAKIS, G. E. Hidden fluid mechanics:a Navier-Stokes informed deep learning framework for assimilating flow visualization data. arXiv Preprint, arXiv:1808.04327(2018) https://doi.org/10.48550/arXiv.1808.04327 [18] RAISSI, M., WANG, Z., TRIANTAFYLLOU, M. S., and KARNIADAKIS, G. E. Deep learning of vortex-induced vibrations. Journal of Fluid Mechanics, 861, 119-137(2019) [19] CAI, S., MAO, Z., WANG, Z., YIN, M., and KARNIADAKIS, G. E. Physics-informed neural networks (PINNs) for fluid mechanics:a review. Acta Mechanica Sinica, 37(12), 1727-1738(2021) [20] MAO, Z., JAGTAP, A. D., and KARNIADAKIS, G. E. Physics-informed neural networks for high-speed flows. Computer Methods in Applied Mechanics and Engineering, 360, 112789(2020) [21] JAGTAP, A. D., MAO, Z., ADAMS, N., and KARNIADAKIS, G. E. Physics-informed neural networks for inverse problems in supersonic flows. Journal of Computational Physics, 466, 111402(2022) [22] BAYDIN, A. G., PEARLMUTTER, B. A., RADUL, A. A., and SISKIND, J. M. Automatic differentiation in machine learning:a survey. Journal of Machine Learning Research, 18, 1-43(2018) [23] BERGER, M. J. and OLIGER, J. Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics, 53(3), 484-512(1984) [24] BERGER, M. J. and COLELLA, P. Local adaptive mesh refinement for shock hydrodynamics. Journal of Computational Physics, 82(1), 64-84(1989) [25] VERFÜRTH, R. A posteriori error estimation and adaptive mesh-refinement techniques. Journal of Computational and Applied Mathematics, 50(1-3), 67-83(1994) [26] BAEZA, A. and MULET, P. Adaptive mesh refinement techniques for high-order shock capturing schemes for multi-dimensional hydrodynamic simulations. International Journal for Numerical Methods in Fluids, 52(4), 455-471(2006) [27] YU, J., LU, L., MENG, X., and KARNIADAKIS, G. E. Gradient-enhanced physics-informed neural networks for forward and inverse pde problems. Computer Methods in Applied Mechanics and Engineering, 393, 114823(2022) [28] WU, C., ZHU, M., TAN, Q., KARTHA, Y., and LU, L. A comprehensive study of nonadaptive and residual-based adaptive sampling for physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 403, 115671(2023) [29] GAO, Z., YAN, L., and ZHOU, T. Failure-informed adaptive sampling for PINNs. arXiv Preprint, arXiv:2210.00279(2022) https://doi.org/10.48550/arXiv.2210.00279 [30] GUO, J., WANG, H., and HOU, C. A novel adaptive causal sampling method for physicsinformed neural networks. arXiv Preprint, arXiv:2210.12914(2022) https://doi.org/10.48550/arXiv.2210.12914 [31] HAN, J., CAI, Z., WU, Z., and ZHOU, X. Residual-quantile adjustment for adaptive training of physics-informed neural network. arXiv Preprint, arXiv:2209.05315(2022) https://doi.org/10.48550/arXiv.2209.05315 |