[1] Fu, D. X. and Ma, Y. W. Methods of group velocity controlling and numerical simulation of three-dimensional planar mixing layer. Proceedings of Modern Mechanics and Science and Technology Progress Conference, China Academy of Mechanics, Beijing, 533-538 (1997)
[2] Yuan, X. J. and Zhou, H. A numerical study for small amplitude T-S waves in a supersonic boundary layer. Applied Mathematics and Mechanics (English Edition), 21(12), 1211-1214 (2000) DOI 10.1007/BF02459212
[3] Shen, Q., Zhang, H. X., and Yuan, X. J. Numerical simulation of shock-lets within the supersonic boundary layer. Acta Aerodynamica Sinica, 18, 103-108 (2000)
[4] Huang, Z. F. and Zhou, H. Evolution of a 2-D disturbance in a supersonic boundary layer and the generation of shocklets. Applied Mathematics and Mechanics (English Edition), 25(1), 1-8 (2004) DOI 10.1007/BF02437288
[5] Cao, W. and Zhou, H. A numerical investigation of the evolution of 2-D disturbances in hypersonic boundary-layers and the effect on the flow structure due to the existence of shocklets. Science in China (Series G), 47(2), 244-255 (2004)
[6] Whitham, G. B. On the propagation of weak shock wave. Journal of Fluid Mechanics, 1, 290-318 (1956)
[7] Liepmann, H. W. and Roshko, A. Elements of Gasdynamics, Wiley, New York (1957)
[8] Mack, L. M. Stability of the compressible laminar boundary layer according to a direct numerical simulation. Recent Developments in Boundary Layer Research, 97, 329-362 (1965)
[9] Yuan, X. J., Tian, J.W., Shen, Q., and Li, Y. Shocklets in compressible flows. Applied Mathematics and Mechanics (English Edition), 34(12), 1453-1464 (2013) DOI 10.1007/s10483-013-1759-7
[10] Lighthill, M. J. Viscosity effects in sound waves of finite amplitude. Surveys in Mechanics (eds. Batchelor, G. K. and Davies, R. M.), Cambridge University Press, London (1956)
[11] Coleman, B. D., Herrera, I., and Truesdell, C. Wave Propagation in Dissipative Materials, Springer, New York (1965) |