[1] Yamanouchi, M., Koizumi, M., Hirai, T., and Shiota, I. Proceedings of the First International Symposium on Functionally Gradient Materials, Sendai, Japan (1990)
[2] Yas, M. H. and Moloudi, N. Three-dimensional free vibration analysis of multi-directional functionally graded piezoelectric annular plates on elastic foundations via state space based differential quadrature method. Applied Mathematics and Mechanics (English Edition), 36(4), 439-464(2015) DOI 10.1007/s10483-015-1923-9
[3] Hadji, L., Atmane, H. A., Tounsi, A., Mechab, I., and Adda Bedia, E. A. Free vibration of functionally graded sandwich plates using four-variable refined plate theory. Applied Mathematics and Mechanics (English Edition), 32(7), 925-942(2011) DOI 10.1007/s10483-011-1470-9
[4] Gupta, A., Talha, M., and Singh, B. N. Vibration characteristics of functionally graded material plate with various boundary constraints using higher order shear deformation theory. Composites Part B:Engineering, 94, 64-74(2016)
[5] Jin, G., Su, Z., Ye, T., and Gao, S. Three-dimensional free vibration analysis of functionally graded annular sector plates with general boundary conditions. Composites Part B:Engineering, 83, 352-366(2015)
[6] Thai, H. T., Nguyen, T. K., Vo, T. P., and Lee, J. Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. European Journal of Mechanics-A/Solids, 45, 211-225(2014)
[7] Bernardo, G. M. S., Damáio, F. R., Silva, T. A. N., and Loja, M. A. R. A study on the structural behaviour of FGM plates static and free vibrations analyses. Composite Structures, 136, 124-138(2016)
[8] Zhang, W., Yang, J., and Hao, Y. X. Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory. Nonlinear Dynamics, 59(4), 619-660(2010)
[9] Ke, L. L., Yang, J., Kitipornchai, S., Bradford, M. A., and Wang, Y. S. Axisymmetric nonlinear free vibration of size-dependent functionally graded annular microplates. Composites Part B:Engineering, 53, 207-217(2013)
[10] Alijani, F., Bakhtiari-Nejad, F., and Amabili, M. Nonlinear vibrations of FGM rectangular plates in thermal environments. Nonlinear Dynamics, 66(3), 251-270(2011)
[11] Hao, Y. X., Zhang, W., and Yang, J. Nonlinear oscillation of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method. Composites Part B:Engineering, 42(3), 402-413(2011)
[12] Hao, Y. X., Zhang, W., and Yang, J. Nonlinear dynamics of a FGM plate with two clamped opposite edges and two free edges. Acta Mechanica Solida Sinica, 27(4), 394-406(2014)
[13] Yang, J., Hao, Y. X., Zhang, W., and Kitipornchai, S. Nonlinear dynamic response of a functionally graded plate with a through-width surface crack. Nonlinear Dynamics, 59(1/2), 207-219(2010)
[14] Wang, Y. Q. and Zu, J. W. Nonlinear steady-state responses of longitudinally traveling functionally graded material plates in contact with liquid. Composite Structures, 164, 130-144(2017)
[15] Wang, Y. Q. and Zu, J. W. Nonlinear dynamics of functionally graded material plates under dynamic liquid load and with longitudinal speed. International Journal of Applied Mechanics, (2017) DOI 10.1142/S1758825117500545
[16] Wang, Y. Q. and Zu, J. W. Nonlinear dynamic thermoelastic response of rectangular FGM plates with longitudinal velocity. Composites Part B:Engineering, 117, 74-88(2017)
[17] Chen, L. Q., Yang, X. D., and Cheng, C. J. Dynamic stability of an axially accelerating viscoelastic beam. European Journal of Mechanics-A/Solids, 23(4), 659-666(2004)
[18] Zhang, W., Wang, D. M., and Yao, M. H. Using Fourier differential quadrature method to analyze transverse nonlinear vibrations of an axially accelerating viscoelastic beam. Nonlinear Dynamics, 78(2), 839-856(2014)
[19] Ding, H., Zhang, G. C., Chen, L. Q., and Yang, S. P. Forced vibrations of supercritically transporting viscoelastic beams. ASME Journal of Vibration and Acoustics, 134(5), 051007(2012)
[20] Marynowski, K. and Kapitaniak, T. Dynamics of axially moving continua (review). International Journal of Mechanical Sciences, 81, 26-41(2014)
[21] Yang, X. D., Yang, S., Qian, Y. J., Zhang, W., and Melnik, R. V. N. Modal analysis of the gyroscopic continua:comparison of continuous and discretized models. Journal of Applied Mechanics, 83(8), 084502(2016)
[22] Yang, X. D., Zhang, W., and Melnik, R. V. N. Energetics and invariants of axially deploying beam with uniform velocity. AIAA Journal, 54(7), 2181-2187(2016)
[23] Wang, Y. Q., Liang, L., and Guo, X. H. Internal resonance of axially moving laminated circular cylindrical shells. Journal of Sound and Vibration, 332(24), 6434-6450(2013)
[24] Chen, L. Q. and Ding, H. Steady-state transverse response in coupled planar vibration of axially moving viscoelastic beams. ASME Journal of Vibration and Acoustics, 132(1), 011009(2010)
[25] Yang, X. D. and Chen, L. Q. Dynamic stability of axially moving viscoelastic beams with pulsating speed. Applied Mathematics and Mechanics (English Edition), 26(8), 989-995(2005) DOI 10.1007/BF02466411
[26] Zhang, H. J., Ma, J., Ding, H., and Chen, L. Q. Vibration of axially moving beam supported by viscoelastic foundation. Applied Mathematics and Mechanics (English Edition), 38(2), 161-172(2017) DOI 10. 1007/s10483-017-2170-9
[27] Yan, Q. Y., Ding, H., and Chen, L. Q. Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations. Applied Mathematics and Mechanics (English Edition), 36(8), 971-984(2015) DOI 10.1007/s10483-015-1966-7
[28] Ding, H., Huang, L. L., Mao, X. Y., and Chen, L. Q. Primary resonance of traveling viscoelastic beam under internal resonance. Applied Mathematics and Mechanics (English Edition), 38(1), 1-14(2017) DOI 10.1007/s10483-016-2152-6
[29] Ding, H. and Chen, L. Q. Approximate and numerical analysis of nonlinear forced vibration of axially moving viscoelastic beams. Acta Mechanica Sinica, 27(3), 426-437(2011)
[30] Ding, H. and Chen, L. Q. Galerkin methods for natural frequencies of high-speed axially moving beams. Journal of Sound and Vibration, 329(17), 3484-3494(2010)
[31] Yang, X. D. and Zhang, W. Nonlinear dynamics of axially moving beam with coupled longitudinal- transversal vibrations. Nonlinear Dynamics, 78(4), 2547-2556(2014)
[32] Wang, Y. Q., Guo, X. H., Sun, Z., and Li, J. Stability and dynamics of axially moving unidirectional plates partially immersed in a liquid. International Journal of Structural Stability and Dynamics, 14(4), 1450010(2014)
[33] Wang, Y., Du, W., Huang, X., and Xue, S. Study on the dynamic behavior of axially moving rectangular plates partially submersed in fluid. Acta Mechanica Solida Sinica, 28(6), 706-721(2015)
[34] Wang, Y. Q., Huang, X. B., and Li, J. Hydroelastic dynamic analysis of axially moving plates in continuous hot-dip galvanizing process. International Journal of Mechanical Sciences, 110, 201-216(2016)
[35] Wang, Y. Q., Xue, S. W., Huang, X. B., and Du, W. Vibrations of axially moving vertical rectangular plates in contact with fluid. International Journal of Structural Stability and Dynamics, 16(2), 1450092(2016)
[36] Wang, Y. and Zu, J. W. Analytical analysis for vibration of longitudinally moving plate submerged in infinite liquid domain. Applied Mathematics and Mechanics (English Edition), 38(5), 625-646(2017) DOI 10.1007/s10483-017-2192-9
[37] Wang, Y. Q. and Zu, J. W. Instability of viscoelastic plates with longitudinally variable speed and immersed in ideal liquid. International Journal of Applied Mechanics, 9(1), 1750005(2017)
[38] Chi, S. H. and Chung, Y. L. Mechanical behavior of functionally graded material plates under transverse load-part I:analysis. International Journal of Solids and Structures, 43(13), 3657-3674(2006)
[39] Chi, S. H. and Chung, Y. L. Cracking in sigmoid functionally graded coating. Journal of Mechanics, 18, 41-53(2002)
[40] Chi, S. H. and Chung, Y. L. Mechanical behavior of functionally graded material plates under transverse load-part Ⅱ:numerical results. International Journal of Solids and Structures, 43(13), 3675-3691(2006)
[41] Han, S. C., Lee, W. H., and Park, W. T. Non-linear analysis of laminated composite and sigmoid functionally graded anisotropic structures using a higher-order shear deformable natural Lagrangian shell element. Composite Structures, 89(1), 8-19(2009)
[42] Fereidoon, A., Seyedmahalle, M. A., and Mohyeddin, A. Bending analysis of thin functionally graded plates using generalized differential quadrature method. Archive of Applied Mechanics, 81(8), 1523-1539(2011)
[43] Atmane, H. A., Tounsi, A., Ziane, N., and Mechab, I. Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section. Steel and Composite Structures, 11(6), 489-504(2011)
[44] Amabili, M. Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, New York (2008)
[45] Wang, Y. Q., Guo, X. H., Chang, H. H., and Li, H. Y. Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape-part I:numerical solution. International Journal of Mechanical Sciences, 52(9), 1217-1224(2010)
[46] Wang, Y. Q., Guo, X. H., Chang, H. H., and Li, H. Y. Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape-part Ⅱ:approximate analytical solution. International Journal of Mechanical Sciences, 52(9), 1208-1216(2010)
[47] Wang, Y. Q., Guo, X. H., Li, Y. G., and Li, J. Nonlinear traveling wave vibration of a circular cylindrical shell subjected to a moving concentrated harmonic force. Journal of Sound and Vibration, 329(3), 338-352(2010)
[48] Wang, Y., Liang, L., Guo, X., Li, J., Liu, J., and Liu, P. Nonlinear vibration response and bifurcation of circular cylindrical shells under traveling concentrated harmonic excitation. Acta Mechanica Solida Sinica, 26(3), 277-291(2013)
[49] Wang, Y. Q. Nonlinear vibration of a rotating laminated composite circular cylindrical shell:traveling wave vibration. Nonlinear Dynamics, 77(4), 1693-1707(2014)
[50] Yang, X. D., Chen, L. Q., and Zu, J. W. Vibrations and stability of an axially moving rectangular composite plate. Journal of Applied Mechanics, 78(1), 011018(2011)
[51] Amabili, M. Nonlinear vibrations of rectangular plates with different boundary conditions:theory and experiments. Computers and Structures, 82(31/32), 2587-2605(2004) |