[1] HORTON, C. W. and ROGERS, F. T. Convection currents in a porous medium. Journal of Applied Physics, 16, 367-370(1945) [2] LAPWOOD, E. R. Convection of a fluid in a porous medium. Mathematical Proceedings of the Cambridge Philosophical Society, 44, 508-512(1948) [3] NIELD, D. A. and BEJAN, A. Convection in Porous Media, 5th ed., Springer, New York (2017) [4] STRAUGHAN, B. Stability and Wave Motion in Porous Media, Springer, New York (2008) [5] STRAUGHAN, B. Convection with Local Thermal Non-Equilibrium and Microfluidic Effects, Springer, New York (2015) [6] VAFAI, K. Handbook of Porous Media, Marcel Dekker, New York (2000) [7] RUDRAIAH, N., SRIMANI, P. K., and FRIEDRICH, R. Finite amplitude convection in a twocomponent fluid saturated porous layer. International Journal of Heat and Mass Transfer, 25, 715-722(1982) [8] KIM, M. C., LEE, S. B., KIM, S., and CHUNG, B. J. Thermal instability of viscoelastic fluids in porous media. International Journal of Heat and Mass Transfer, 46, 5065-5072(2003) [9] SHIVAKUMARA, I. S. and SURESHKUMAR, S. Convective instabilities in a viscoelastic-fluidsaturated porous medium with through flow. Journal of Geophysics and Engineering, 4, 104-115(2007) [10] BERTOLA, V. and CAFARO, E. Thermal instability of viscoelastic fluids in horizontal porous layers as initial problem. International Journal of Heat and Mass Transfer, 4, 4003-4012(2006) [11] WANG, S. and TAN, W. Stability analysis of soret-driven double-diffusive convection of Maxwell fluid in a saturated porous medium. International Journal of Heat and Fluid Flow, 32, 88-94(2011) [12] MALASHETTY, M. S., TAN, W. C., and SWAMY, M. The onset of double diffusive convection in a binary viscoelastic fluid saturated anisotropic porous layer. Physics of Fluids, 21, 084101-084111(2009) [13] AWAD, F. G., SIBANDA, P., and MOTSA, S. S. On the linear stability analysis of a Maxwell fluid with double-diffusive convection. Applied Mathematical Modeling, 34, 3509-3517(2010) [14] LARSON, R. G. Instabilities in viscoelastic flows. Rheological Acta, 31, 213-221(1992) [15] PERKINS, T. T., QUAKE, S. R., SMITH, D. E., and CHU, S. Relaxation of a single DNA molecule observed by optical microscopy. Science, 264, 822-826(1994) [16] PERKINS, T. T., SMITH, D. E., and CHU, S. Single polymer dynamics in an elongational flow. Science, 276, 2016-2021(1997) [17] KOLODNER, P. Oscillatory convection in viscoelastic DNA suspensions. Journal of NonNewtonian Fluid Mechanics, 75, 167-192(1998) [18] CELIA, M. A., KINDRED, J. S., and HERRERA, I. Contaminant transport and biodegrasdation I:a numerical model for reactive transport in porous media. Water Resources Research, 25, 1141-1148(1989) [19] CHEN, B., CUNNINGHAM, A., EWING, R., PERALTA, R., and VISSER, E. Two-dimensional modelling of micro scale transport and biotransformation in porous media. Numerical Methods Partial Differential Equations, 10, 65-83(1994) [20] GRIFFITHS, R. W. The transport of multiple components through thermohaline diffusive interfaces. Deep-Sea Research, 26, 383-397(1979) [21] TURNER, J. S. Multicomponent convection. Annual Review of Fluid Mechanics, 17, 11-44(1985) [22] MOROZ, I. M. Multiple instabilities in a triply diffusive system. Studies in Applied Mathematics, 80, 137-164(1989) [23] COX, S. M. and MOROZ, I. M. Multiple bifurcations in triple convection with non-ideal boundary conditions. Physica D:Nonlinear Phenomena, 93, 1-22(1996) [24] PEARLSTEIN, A. J., HARRIS, R. M., and TERRONES, G. The onset of convective instability in a triply diffusive of fluid layer. Journal of Fluid Mechanics, 202, 443-465(1989) [25] TERRONES, G. and PEARLSTEIN, A. J. The onset of convection in a multicomponent fluid layer. Physics of Fluids, 1, 845-853(1989) [26] TERRONES, G. Cross diffusion effects on the stability criteria in a triply diffusive system. Physics of Fluids, 5, 2172-2182(1993) [27] LOPEZ, A. R., ROMERO, L. A., and PEARLSTEIN, A. J. Effect of rigid boundaries on the onset of convective instability in a triply diffusive fluid layer. Physics of Fluids, 2, 896-902(1990) [28] SHIVAKUMARA, I. S. and NAVEEN-KUMAR, S. B. Linear and weakly nonlinear triple diffusive convection in a couple stress fluid layer. International Journal of Heat and Mass Transfer, 68, 542-553(2015) [29] RUDRAIAH, N. and VORTMEYER, D. Influence of permeability and of a third diffusing component upon the onset of convection in a porous medium. International Journal of Heat and Mass Transfer, 25, 457-464(1982) [30] POULIKAKOS, D. Effect of a third diffusing component on the onset of convection in a horizontal layer. Physics of Fluids, 28, 3172-3174(1985) [31] TRACEY, J. Multi-component convection-diffusion in a porous medium. Continuum Mechanics and Thermodynamics, 8, 361-381(1996) [32] RIONERO, S. Long-time behaviour of multi-component fluid mixtures in porous media. International Journal of Engineering Science, 48, 1519-1533(2010) [33] RIONERO, S. Triple diffusive convection in porous media. Acta Mechanica, 224, 447-458(2003) [34] ZHAO, M., WANG, S., and ZHANG, Q. Onset of triply diffusive convection in a Maxwell fluid saturated porous layer. Applied Mathematical Modeling, 38, 2345-2352(2014) [35] RAGHUNATHA, K. R., SHIVAKUMARA, I. S., and SHANKAR, B. M. Weakly nonlinear stability analysis of triple diffusive convection in a Maxwell fluid saturated porous layer. Applied Mathematics and Mechanics (English Edition), 39, 153-168(2018) https://doi.org/10.1007/s10483-018-2298-6 [36] ALISHAEV, M. G. and MIRZADJANZADE, A. K. For the calculation of delay phenomenon in filtration theory. Izvestya Vuzov Neft'i Gaz, 6, 71-77(1975) [37] KHUZHAVOROV, B., AURIAULT, J. L., and ROVER, P. Derivation of macroscopic filtration law for transient linear viscoelastic fluid flow in porous media. International Journal of Engineering Science, 38, 487-504(2000) [38] TAN, W. and MASUOKA, T. Stability analysis of a Maxwell fluid in a porous medium heated from below. Physics Letters A, 360, 454-460(2007) [39] VADASZ, P. Coriolis effect on gravity-driven convection in a rotating porous layer heated from below. Journal of Fluid Mechanics, 376, 351-375(1998) [40] PLUTCHOK, G. J. and JOZEF, L. K. Predicting steady and oscillatory shear rheological properties of CMC and guar gum blends from concentration and molecular weight data. Journal of Food Science, 51, 1284-1288(1986) [41] HAO, W. and FRIEDMAN, A. The LDL-HDL profile determines the risk of atherosclerosis:a mathematical model. PLoS One, 9, 1-15(2014) |