Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (10): 1685-1704.doi: https://doi.org/10.1007/s10483-024-3178-9
• Articles • Previous Articles Next Articles
Jing'ang ZHU, Yiheng XUE, Zishun LIU*()
Received:
2024-08-15
Online:
2024-10-03
Published:
2024-09-27
Contact:
Zishun LIU
E-mail:zishunliu@mail.xjtu.edu.cn
Supported by:
2010 MSC Number:
Jing'ang ZHU, Yiheng XUE, Zishun LIU. A transfer learning enhanced physics-informed neural network for parameter identification in soft materials. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1685-1704.
Fig. 3
The PINN model solving the forward problem for the compressible Neo-Hookean hyperelastic model: (a) the forward problem setup with a displacement load; (b) the decreasing history of the loss function, normalized by its initial value; (c) the PINN inference and (d) the FEM reference of the full-fleld domain (color online)"
Fig. 4
The PINN model solving the forward problem for hydrogels: (a) the forward problem setup with a biaxial triangular force load; (b) the decreasing history of the loss functions with the normalized PINN trained over 20 000 epochs and the unnormalized PINN over 17 400 epochs; the predicted full-fleld solutions using (c) unnormalized and (d) normalized PINNs, respectively; (e) the FEM reference (color online)"
Fig. 6
Prediction results for the inverse problem of hydrogel swelling under chemical potential stimuli: (a) the problem setup, with the left, bottom, and right edges flxed; (b) the convergence history of the chemical potential , achieving a relative error of 0.82%; (c) the decreasing history of the loss function; (d) the continuous full-fleld solution output by the network; (e) the FEM discrete results for reference (color online)"
Fig. 7
Prediction results for the inverse problem of hydrogel deswelling under chemical potential stimuli: (a) the problem setup, with the left and right edges flxed; (b) the convergence history of the chemical potential , achieving a relative error of 0.87%; (c) the decreasing history of the loss function; (d) the continuous full-fleld solution output by the network; (e) the FEM discrete results for reference (color online)"
Fig. 8
The TL-PINN performance in parameter identiflcation and solution inference for hydrogel with multitask transfer learning: (a) the problem setup, similar to the inverse problem prototype for hydrogel but with a tenfold increase in Nv, a doubled χ, and a quintupled σmax; (b) the convergence of the total MSE loss for the source PINN and TL-PINN; (c) the convergence of the source PINN and TL-PINN for identifying Nv; (d) the convergence of the source PINN and TL-PINN for identifying χ; (e) the full-fleld predictions of flve mechanical quantities by the TL-PINN; (f) the FEM results for reference (color online)"
1 | JIN, S., CHOI, H., SEONG, D., YOU, C. L., KANG, J. S., RHO, S., LEE, W. B., SON, D., and SHIN, M. Injectable tissue prosthesis for instantaneous closed-loop rehabilitation. nature, 623 (7985), 58- 65 (2023) |
2 | CHEN, L., JIN, Z., FENG, W., SUN, L., XU, H., and WANG, C. A hyperelastic hydrogel with an ultralarge reversible biaxial strain. Science, 383 (6690), 1455- 1461 (2024) |
3 | LIU, Z., TOH, W., and NG, T. Y. Advances in mechanics of soft materials: a review of large deformation behavior of hydrogels. International Journal of Applied Mechanics, 7 (5), 1530001 (2015) |
4 | HUANG, R., ZHENG, S., LIU, Z., and NG, T. Y. Recent advances of the constitutive models of smart materials-hydrogels and shape memory polymers. International Journal of Applied Mechanics, 12 (2), 2050014 (2020) |
5 | LONG, R., and HUI, C. Y. Fracture toughness of hydrogels: measurement and interpretation. Soft Matter, 12 (39), 8069- 8086 (2016) |
6 | SONG, S. and JIN, H. Identifying constitutive parameters for complex hyperelastic materials using physics-informed neural networks. arXiv Preprint, arXiv: 2308.15640(2024) https://doi.org/10.48550/arXiv.2308.15640 |
7 | CLEGG, P. S. Characterising soft matter using machine learning. Soft Matter, 17 (15), 3991- 4005 (2021) |
8 | HERRMANN, L., and KOLLMANNSBERGER, S. Deep learning in computational mechanics: a review. Computational Mechanics, 74, 281- 331 (2024) |
9 | BRODNIK, N. R., MUIR, C., TULSHIBAGWALE, N., ROSSIN, J., ECHLIN, M. P., HAMEL, C. M., KRAMER, S. L. B., POLLOCK, T. M., KISER, J. D., SMITH, C., and DALY, S. H. Perspective: machine learning in experimental solid mechanics. Journal of the Mechanics and Physics of Solids, 173, 105231 (2023) |
10 | JIN, H., ZHANG, E., and ESPINOSA, H. D. Recent advances and applications of machine learning in experimental solid mechanics: a review. Applied Mechanics Reviews, 75 (6), 061001 (2023) |
11 | LECUN, Y., BENGIO, Y., and HINTON, G. Deep learning. nature, 521 (7553), 436- 444 (2015) |
12 | CHEN, C. T., and GU, G. X. Machine learning for composite materials. MRS Communications, 9 (2), 556- 566 (2019) |
13 | MOZAFFAR, M., BOSTANABAD, R., CHEN, W., EHMANN, K., CAO, J., and BESSA, M. A. Deep learning predicts path-dependent plasticity. Proceedings of the National Academy of Sciences, 116, 26414- 26420 (2019) |
14 | HSU, Y. C., YU, C. H., and BUEHLER, M. J. Using deep learning to predict fracture patterns in crystalline solids. Matter, 3 (1), 197- 211 (2020) |
15 | ZHU, J. A., JIA, Y., LEI, J., and LIU, Z. Deep learning approach to mechanical property prediction of single-network hydrogel. Mathematics, 9 (21), 2804 (2021) |
16 | RUDY, S. H., BRUNTON, S. L., PROCTOR, J. L., and KUTZ, J. N. Data-driven discovery of partial difierential equations. Science Advances, 3 (4), e1602614 (2017) |
17 | ZOBEIRY, N., REINER, J., and VAZIRI, R. Theory-guided machine learning for damage characterization of composites. Composite Structures, 246, 112407 (2020) |
18 | LIU, X., ATHANASIOU, C. E., PADTURE, N. P., SHELDON, B. W., and GAO, H. Knowledge extraction and transfer in data-driven fracture mechanics. Proceedings of the National Academy of Sciences, 118(23), e2104765118, 118 (23), e2104765118 (2021) |
19 | RAISSI, M., PERDIKARIS, P., and KARNIADAKIS, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial difierential equations. Journal of Computational Physics, 378, 686- 707 (2019) |
20 | CHEN, Z., LIU, Y., and SUN, H. Physics-informed learning of governing equations from scarce data. Nature Communications, 12 (1), 6136 (2021) |
21 | KARNIADAKIS, G. E., KEVREKIDIS, I. G., LU, L., PERDIKARIS, P., WANG, S., and YANG, L. Physics-informed machine learning. Nature Reviews Physics, 3 (6), 422- 440 (2021) |
22 | GOSWAMI, S., ANITESCU, C., CHAKRABORTY, S., and RABCZUK, T. Transfer learning enhanced physics informed neural network for phase-fleld modeling of fracture. Theoretical and Applied Fracture Mechanics, 106, 102447 (2020) |
23 | SHUKLA, K., DI, LEONI P. C., BLACKSHIRE, J., SPARKMAN, D., and KARNIADAKIS, G. E. Physics-informed neural network for ultrasound nondestructive quantiflcation of surface breaking cracks. Journal of Nondestructive Evaluation, 39 (3), 1- 20 (2020) |
24 | HENKES, A., WESSELS, H., and MAHNKEN, R. Physics informed neural networks for continuum micromechanics. Computer Methods in Applied Mechanics and Engineering, 393, 114790 (2022) |
25 | ZHENG, B., LI, T., QI, H., GAO, L., LIU, X., and YUAN, L. Physics-informed machine learning model for computational fracture of quasi-brittle materials without labelled data. International Journal of Mechanical Sciences, 223, 107282 (2022) |
26 | LIU, C., and WU, H. A. A variational formulation of physics-informed neural network for the applications of homogeneous and heterogeneous material properties identiflcation. International Journal of Applied Mechanics, 15 (8), 2350065 (2023) |
27 | ZHANG, E., DAO, M., KARNIADAKIS, G. E., and SURESH, S. Analyses of internal structures and defects in materials using physics-informed neural networks. Science Advances, 8 (7), eabk0644 (2022) |
28 | HAGHIGHAT, E., RAISSI, M., MOURE, A., GOMEZ, H., and JUANES, R. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Computer Methods in Applied Mechanics and Engineering, 379, 113741 (2021) |
29 | KAMALI, A., SARABIAN, M., and LAKSARI, K. Elasticity imaging using physics-informed neural networks: spatial discovery of elastic modulus and Poissonos ratio. Acta Biomaterialia, 155, 400- 409 (2023) |
30 | NIU, S., ZHANG, E., BAZILEVS, Y., and SRIVASTAVA, V. Modeling flnite-strain plasticity using physics-informed neural network and assessment of the network performance. Journal of the Mechanics and Physics of Solids, 172, 105177 (2023) |
31 | SU, H., YAN, H., ZHANG, X., and ZHONG, Z. Multiphysics-informed deep learning for swelling of pH/temperature sensitive cationic hydrogels and its inverse problem. Mechanics of Materials, 175, 104498 (2022) |
32 | ZHENG, S., and LIU, Z. The machine learning embedded method of parameters determination in the constitutive models and potential applications for hydrogels. International Journal of Applied Mechanics, 13 (1), 2150001 (2021) |
33 | WANG, J., ZHU, B., HUI, C. Y., and ZEHNDER, A. T. Determination of material parameters in constitutive models using adaptive neural network machine learning. Journal of the Mechanics and Physics of Solids, 177, 105324 (2023) |
34 | HONG, W., LIU, Z., and SUO, Z. Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. International Journal of Solids and Structures, 46 (17), 3282- 3289 (2009) |
35 | GOSWAMI, S., KONTOLATI, K., SHIELDS, M. D., and KARNIADAKIS, G. E. Deep transfer operator learning for partial difierential equations under conditional shift. Nature Machine Intelligence, 4, 1155- 1164 (2022) |
36 | HONG, W., ZHAO, X., ZHOU, J., and SUO, Z. A theory of coupled difiusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 56 (5), 1779- 1793 (2008) |
37 | RAISSI, M., YAZDANI, A., and KARNIADAKIS, G. E. Hidden fluid mechanics: learning velocity and pressure flelds from flow visualizations. Science, 367 (6481), 1026- 1030 (2020) |
38 | HAGHIGHAT, E., and JUANES, R. SciANN: a Keras/TensorFlow wrapper for scientiflc computations and physics-informed deep learning using artiflcial neural networks. Computer Methods in Applied Mechanics and Engineering, 373, 113552 (2021) |
39 | LU, L., MENG, X., MAO, Z., and KARNIADAKIS, G. E. DeepXDE: a deep learning library for solving difierential equations. SIAM Review, 63 (1), 208- 228 (2021) |
40 | LU, L., PESTOURIE, R., YAO, W. J., WANG, Z. C., VERDUGO, F., and JOHNSON, S. G. Physics-informed neural networks with hard constraints for inverse design. SIAM Journal on Scientiflc Computing, 43 (6), B1105- B1132 (2021) |
41 | ZHAO, X., GONG, Z., ZHANG, Y., YAO, W., and CHEN, X. Physics-informed convolutional neural networks for temperature fleld prediction of heat source layout without labeled data. Engineering Applications of Artiflcial Intelligence, 117, 105516 (2023) |
42 | LINKA, K., SCHÄFER, A., MENG, X., ZOU, Z., KARNIADAKIS, G. E., and KUHL, E. Bayesian physics informed neural networks for real-world nonlinear dynamical systems. Computer Methods in Applied Mechanics and Engineering, 402, 115346 (2022) |
43 |
WU, W., DANEKER, M., JOLLEY, M. A., TURNER, K. T., and LU, L. Efiective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics. Applied Mathematics and Mechanics (English Edition), 44 (7), 1039- 1068 (2023)
doi: 10.1007/s10483-023-2995-8 |
44 |
ZHUANG, F., QI, Z., DUAN, K., XI, D., ZHU, Y., ZHU, H., XIONG, H., and HE, Q. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109 (1), 43- 76 (2021)
doi: 10.1109/JPROC.2020.3004555 |
[1] | K. CHANDAN, K. KARTHIK, K. V. NAGARAJA, B. C. PRASANNAKUMARA, R. S. VARUN KUMAR, T. MUHAMMAD. Radiative heat transfer analysis of a concave porous fin under the local thermal non-equilibrium condition: application of the clique polynomial method and physics-informed neural networks [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1613-1632. |
[2] | Long WANG, Lei ZHANG, Guowei HE. Chien-physics-informed neural networks for solving singularly perturbed boundary-layer problems [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1467-1480. |
[3] | Lei WANG, Zikun LUO, Mengkai LU, Minghai TANG. A physics-informed neural network for simulation of finite deformation in hyperelastic-magnetic coupling problems [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1717-1732. |
[4] | J. N. FUHG, A. KARMARKAR, T. KADEETHUM, H. YOON, N. BOUKLAS. Deep convolutional Ritz method: parametric PDE surrogates without labeled data [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1151-1174. |
[5] | Xuhui MENG. Variational inference in neural functional prior using normalizing flows: application to differential equation and operator learning problems [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1111-1124. |
[6] | Yichuan HE, Zhicheng WANG, Hui XIANG, Xiaomo JIANG, Dawei TANG. An artificial viscosity augmented physics-informed neural network for incompressible flow [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1101-1110. |
[7] | Zhiping MAO, Xuhui MENG. Physics-informed neural networks with residual/gradient-based adaptive sampling methods for solving partial differential equations with sharp solutions [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1069-1084. |
[8] | W. WU, M. DANEKER, M. A. JOLLEY, K. T. TURNER, L. LU. Effective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1039-1068. |
[9] | Qiang YIN, Juntong CAI, Xue GONG, Qian DING. Local parameter identification with neural ordinary differential equations [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1887-1900. |
[10] | Shuang LIU, Runze ZHANG, Qingyun WANG, Xiaoyan HE. Sliding mode synchronization between uncertain Watts-Strogatz small-world spatiotemporal networks [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(12): 1833-1846. |
[11] | CHEN Wen-Li;YANG Yu-Qing;LI Hao-Rong. Inverse estimation for unknown fouling geometry on inner wall of forced-convection pipe [J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(1): 55-68. |
[12] | HE Guo-qiang;MENG Ze-hong. A Newton type iterative method for heat-conduction inverse problems [J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(4): 531-539 . |
[13] | HUANG Yi;LIU Zeng-rong. TIME DOMAIN PARAMETERS IDENTIFICATION OF FOUNDATION-STRUCTURE INTERACTION SYSTEM [J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(7): 855-864 . |
[14] | YAO Zhi-yuan;WANG Feng-quan;ZHAO Chun-sheng. A METHOD OF ONLINE DAMAGE IDENTIFICATION FOR STRUCTURES BASED ON AMBIENT VIBRATION [J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(2): 269-276 . |
[15] | WANG De-ming;GAI Bing-zheng. WAY TO DETERMINE STIFFNESS FUNCTION OF STRUCTURE [J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(12): 1605-1610 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||